Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35493335

ABSTRACT

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

2.
Opt Express ; 27(20): 28022-28035, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684560

ABSTRACT

Non-degenerate two-photon excitation (ND-TPE) has been explored in two-photon excitation microscopy. However, a systematic study of the efficiency of ND-TPE to guide the selection of fluorophore excitation wavelengths is missing. We measured the relative non-degenerate two-photon absorption cross-section (ND-TPACS) of several commonly used fluorophores (two fluorescent proteins and three small-molecule dyes) and generated 2-dimensional ND-TPACS spectra. We observed that the shape of a ND-TPACS spectrum follows that of the corresponding degenerate two-photon absorption cross-section (D-TPACS) spectrum, but is higher in magnitude. We found that the observed enhancements are higher than theoretical predictions.

3.
Opt Express ; 27(6): 8335-8347, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31052653

ABSTRACT

In non-degenerate two-photon microscopy (ND-TPM), the required energy for fluorescence excitation occurs via absorption of two photons of different energies derived from two synchronized pulsed laser beams. ND-TPM is a promising imaging technology offering flexibility in the choice of the photon energy for each beam. However, a formalism to quantify the efficiency of two-photon absorption (TPA) under non-degenerate excitation, relative to the resonant degenerate excitation, is missing. Here, we derive this formalism and experimentally validate our prediction for a common fluorophore, fluorescein. An accurate quantification of non-degenerate TPA is important to optimize the choice of photon energies for each fluorophore.

4.
Article in English | MEDLINE | ID: mdl-30691968

ABSTRACT

BACKGROUND: Functional magnetic resonance imaging (fMRI) in awake behaving mice is well positioned to bridge the detailed cellular-level view of brain activity, which has become available owing to recent advances in microscopic optical imaging and genetics, to the macroscopic scale of human noninvasive observables. However, though microscopic (e.g., two-photon imaging) studies in behaving mice have become a reality in many laboratories, awake mouse fMRI remains a challenge. Owing to variability in behavior among animals, performing all types of measurements within the same subject is highly desirable and can lead to higher scientific rigor. METHODS: We demonstrated blood oxygenation level-dependent fMRI in awake mice implanted with long-term cranial windows that allowed optical access for microscopic imaging modalities and optogenetic stimulation. We started with two-photon imaging of single-vessel diameter changes (n = 1). Next, we implemented intrinsic optical imaging of blood oxygenation and flow combined with laser speckle imaging of blood flow obtaining a mesoscopic picture of the hemodynamic response (n = 16). Then we obtained corresponding blood oxygenation level-dependent fMRI data (n = 5). All measurements could be performed in the same mice in response to identical sensory and optogenetic stimuli. RESULTS: The cranial window did not deteriorate the quality of fMRI and allowed alternation between imaging modalities in each subject. CONCLUSIONS: This report provides a proof of feasibility for multiscale imaging approaches in awake mice. In the future, this protocol could be extended to include complex cognitive behaviors translatable to humans, such as sensory discrimination or attention.


Subject(s)
Magnetic Resonance Imaging/methods , Models, Animal , Neuroimaging/methods , Somatosensory Cortex/physiology , Animals , Mice , Optical Imaging/methods , Optogenetics/methods , Somatosensory Cortex/blood supply , Wakefulness
5.
Elife ; 52016 05 31.
Article in English | MEDLINE | ID: mdl-27244241

ABSTRACT

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease.


Subject(s)
Cerebral Cortex/drug effects , Neuropeptide Y/pharmacology , Neurovascular Coupling/drug effects , Receptors, Neuropeptide Y/metabolism , Vasoconstrictor Agents/pharmacology , Animals , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/physiopathology , Diagnostic Imaging , Gene Expression , Magnetic Resonance Imaging , Male , Mice , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Optogenetics , Organ Specificity , Oxygen/metabolism , Photic Stimulation , Protein Binding , Receptors, Neuropeptide Y/genetics , Vasoconstriction/drug effects
6.
Opt Express ; 24(26): 30173-30187, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059294

ABSTRACT

Non-degenerate 2-photon excitation (ND-2PE) of a fluorophore with two laser beams of different photon energies offers an independent degree of freedom in tuning of the photon flux for each beam. This feature takes advantage of the infrared wavelengths used in degenerate 3-photon excitation (D-3PE) microscopy to achieve increased penetration depths, while preserving a relatively high 2-photon excitation cross section in comparison to that of D-3PE. Here, using spatially and temporally aligned Ti:Sapphire laser and optical parametric oscillator beams operating at near infrared (NIR) and short-wavelength infrared (SWIR) optical frequencies, we employ ND-2PE and provide a practical demonstration that a constant fluorophore emission intensity is achievable deeper into a scattering medium using ND-2PE as compared to the commonly used degenerate 2-photon excitation (D-2PE).

7.
Soft Matter ; 11(2): 255-60, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25354546

ABSTRACT

The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce 'meta-materials' has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small applied magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...