Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352425

ABSTRACT

Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.

2.
PLoS Genet ; 18(11): e1010477, 2022 11.
Article in English | MEDLINE | ID: mdl-36350884

ABSTRACT

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Mice , Animals , Charcot-Marie-Tooth Disease/genetics , Myelin Sheath/genetics , Myelin Sheath/metabolism , Axons/metabolism , Neuroglia , Mice, Knockout , Disease Models, Animal , Communication
3.
Hum Mol Genet ; 31(24): 4255-4274, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35908287

ABSTRACT

Mutations in the Myelin Protein Zero gene (MPZ), encoding P0, the major structural glycoprotein of peripheral nerve myelin, are the cause of Charcot-Marie-Tooth (CMT) type 1B neuropathy, and most P0 mutations appear to act through gain-of-function mechanisms. Here, we investigated how misglycosylation, a pathomechanism encompassing several genetic disorders, may affect P0 function. Using in vitro assays, we showed that gain of glycosylation is more damaging for P0 trafficking and functionality as compared with a loss of glycosylation. Hence, we generated, via CRISPR/Cas9, a mouse model carrying the MPZD61N mutation, predicted to generate a new N-glycosylation site in P0. In humans, MPZD61N causes a severe early-onset form of CMT1B, suggesting that hyperglycosylation may interfere with myelin formation, leading to pathology. We show here that MPZD61N/+ mice develop a tremor as early as P15 which worsens with age and correlates with a significant motor impairment, reduced muscular strength and substantial alterations in neurophysiology. The pathological analysis confirmed a dysmyelinating phenotype characterized by diffuse hypomyelination and focal hypermyelination. We find that the mutant P0D61N does not cause significant endoplasmic reticulum stress, a common pathomechanism in CMT1B, but is properly trafficked to myelin where it causes myelin uncompaction. Finally, we show that myelinating dorsal root ganglia cultures from MPZD61N mice replicate some of the abnormalities seen in vivo, suggesting that they may represent a valuable tool to investigate therapeutic approaches. Collectively, our data indicate that the MPZD61N/+ mouse represents an authentic model of severe CMT1B affirming gain-of-glycosylation in P0 as a novel pathomechanism of disease.


Subject(s)
Charcot-Marie-Tooth Disease , Myelin P0 Protein , Humans , Mice , Animals , Myelin P0 Protein/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Sheath/metabolism , Phenotype , Mutation , Disease Models, Animal
4.
Mol Neurobiol ; 59(7): 4159-4178, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35501630

ABSTRACT

Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A, we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analysed by behavioural, neurophysiological, morphological and biochemical measures. Both MpzR98C/ + and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild-type values. Taken together, our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in amyotrophic lateral sclerosis and multiple sclerosis animal models, these data demonstrate its potential in managing UPR and ER stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases. (Left panel) the accumulation of overexpressed PMP22 or misfolded mutant P0 in the Schwann cell endoplasmic reticulum (ER) leads to overwhelming of the degradative capacity, activation of ER-stress mechanisms, and myelination impairment. (Right panel) by prolonging eIF2α phosphorylation, IFB-088 reduces the amount of newly synthesized proteins entering the ER, allowing the protein quality control systems to better cope with the unfolded/misfolded protein and allowing myelination to progress.


Subject(s)
Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/drug therapy , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Disease Models, Animal , Eukaryotic Initiation Factor-2/metabolism , Humans , Mice , Myelin Sheath/metabolism , Schwann Cells/metabolism , Unfolded Protein Response
5.
J Neurosci ; 40(42): 8174-8187, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32973043

ABSTRACT

Myelin Protein Zero (MPZ/P0) is the most abundant glycoprotein of peripheral nerve myelin. P0 is synthesized by myelinating Schwann cells, processed in the endoplasmic reticulum (ER) and delivered to myelin via the secretory pathway. The mutant P0S63del (deletion of serine 63 in the extracellular domain of P0), that causes Charcot-Marie-Tooth type 1B (CMT1B) neuropathy in humans and a similar demyelinating neuropathy in transgenic mice, is instead retained the ER where it activates an unfolded protein response. Under ER-stress conditions, protein kinase R-like endoplasmic reticulum kinase (PERK) phosphorylates eukaryotic initiation factor 2α (eIF2α) to attenuate global translation, thus reducing the misfolded protein overload in the ER. Genetic and pharmacological inactivation of Gadd34 (damage-inducible protein 34), a subunit of the PP1 phosphatase complex that promotes the dephosphorylation of eIF2α, prolonged eIF2α phosphorylation and improved motor, neurophysiological, and morphologic deficits in S63del mice. However, PERK ablation in S63del Schwann cells ameliorated, rather than worsened, S63del neuropathy despite reduced levels of phosphorylated eIF2α. These contradictory findings prompted us to genetically explore the role of eIF2α phosphorylation in P0S63del-CMT1B neuropathy through the generation of mice in which eIF2α cannot be phosphorylated specifically in Schwann cells. Morphologic and electrophysiological analysis of male and female S63del mice showed a worsening of the neuropathy in the absence of eIF2α phosphorylation. However, we did not detect significant changes in ER stress levels, but rather a dramatic increase of the MEK/ERK/c-Jun pathway accompanied by a reduction in expression of myelin genes and a delay in Schwann cell differentiation. Our results support the hypothesis that eIF2α phosphorylation is protective in CMT1B and unveil a possible cross talk between eIF2α and the MEK/ERK pathway in neuropathic nerves.SIGNIFICANCE STATEMENT In the P0S63del (deletion of serine 63 in the extracellular domain of P0) mouse model of Charcot-Marie-Tooth type 1B (CMT1B), the genetic and pharmacological inhibition of Gadd34 (damage-inducible protein 34) prolonged eukaryotic initiation factor 2α (eIF2α) phosphorylation, leading to a proteostatic rebalance that significantly ameliorated the neuropathy. Yet, ablation of protein kinase R-like endoplasmic reticulum kinase (PERK) also ameliorated the S63del neuropathy, despite reduced levels of eIF2α phosphorylation (P-eIF2α). In this study, we provide genetic evidence that eIF2α phosphorylation has a protective role in CMT1B Schwann cells by limiting ERK/c-Jun hyperactivation. Our data support the targeting of the P-eIF2α/Gadd34 complex as a therapeutic avenue in CMT1B and also suggest that PERK may hamper myelination via mechanisms outside its role in the unfolded protein response.


Subject(s)
Cell Differentiation/genetics , Charcot-Marie-Tooth Disease/physiopathology , Eukaryotic Initiation Factor-2/genetics , Myelin Sheath/genetics , Schwann Cells , Animals , Charcot-Marie-Tooth Disease/genetics , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Female , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Transgenic , Phosphorylation , Protein Phosphatase 1/metabolism , Unfolded Protein Response/genetics
6.
PLoS Genet ; 15(4): e1008069, 2019 04.
Article in English | MEDLINE | ID: mdl-30995221

ABSTRACT

In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders.


Subject(s)
Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Endoplasmic Reticulum-Associated Degradation , Myelin Sheath/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Animals , Biomarkers , Cell Line , Demyelinating Diseases/pathology , Fluorescent Antibody Technique , Gene Expression Profiling , Homeostasis , Humans , Mice , Peripheral Nerves/ultrastructure , Sciatic Nerve/metabolism
7.
Hum Mol Genet ; 28(6): 992-1006, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30481294

ABSTRACT

Charcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination. Here we show that genetic overexpression of Nrg1TIII ameliorates neurophysiological and morphological parameters in a mouse model of demyelinating CMT1B, without exacerbating the toxic gain-of-function that underlies the neuropathy. Intriguingly, the mechanism appears not to be related to Krox20 or myelin gene upregulation, but rather to a beneficial rebalancing in the stoichiometry of myelin lipids and proteins. Finally, we provide proof of principle that stimulating Nrg1TIII signaling, by pharmacological suppression of the Nrg1TIII inhibitor tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17), also ameliorates the neuropathy. Thus, modulation of Nrg1TIII by TACE/ADAM17 inhibition may represent a general treatment for hypomyelinating neuropathies.


Subject(s)
Axons/metabolism , Charcot-Marie-Tooth Disease/etiology , Charcot-Marie-Tooth Disease/metabolism , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Neuregulin-1/metabolism , Signal Transduction , Animals , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Early Growth Response Protein 2/metabolism , Electrophysiological Phenomena , Ganglia, Spinal/metabolism , Gene Expression , Lipid Metabolism , Mice , Mice, Transgenic , Myelin Sheath/metabolism , Neuregulin-1/genetics , Schwann Cells/metabolism
8.
Methods Mol Biol ; 1791: 3-13, 2018.
Article in English | MEDLINE | ID: mdl-30006697

ABSTRACT

Transmission electron microscopy (TEM) can provide excellent high-resolution images of cellular structures. A critical step with this technique is sample preparation. Here we describe our protocol for the preparation of semithin and ultrathin sections of mouse peripheral nerves in order to visualize the structure and pathological features of peripheral myelin with TEM.


Subject(s)
Microscopy, Electron , Myelin Sheath/ultrastructure , Peripheral Nerves/ultrastructure , Animals , Mice , Microscopy, Electron/methods , Microscopy, Electron, Transmission/methods , Schwann Cells/metabolism , Schwann Cells/ultrastructure
9.
J Neurosci ; 38(18): 4275-4287, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29610440

ABSTRACT

Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein.SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo, but that their sustained expression in Charcot-Marie-Tooth type 1B (CMT1B) represents an adaptive response activated by the Schwann cells to reduce mutant protein toxicity and prevent demyelination.


Subject(s)
Charcot-Marie-Tooth Disease/pathology , Demyelinating Diseases/pathology , Myelin Sheath/pathology , Schwann Cells/pathology , Animals , Cell Differentiation , Charcot-Marie-Tooth Disease/genetics , Demyelinating Diseases/genetics , Endoplasmic Reticulum Stress/genetics , Female , Inhibitor of Differentiation Protein 2/genetics , Male , Mice , Mice, Knockout , SOXB1 Transcription Factors/genetics , Unfolded Protein Response
10.
PLoS Biol ; 15(6): e2001408, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28636612

ABSTRACT

Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2ß1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Laminin/metabolism , Myelin Sheath/metabolism , Neuregulin-1/metabolism , Schwann Cells/metabolism , Animals , Axons/metabolism , Blotting, Western , Cells, Cultured , Laminin/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Models, Neurological , Neuregulin-1/genetics , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sciatic Nerve/cytology , Sciatic Nerve/metabolism , Sciatic Nerve/ultrastructure
11.
Cell Metab ; 21(4): 571-83, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25817536

ABSTRACT

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy, but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We have found that mice lacking sterol regulatory element-binding factor-1c (Srebf1c) have blunted peripheral nerve FA synthesis that results in development of peripheral neuropathy. Srebf1c-null mice develop Remak bundle alterations and hypermyelination of small-caliber fibers that impair nerve function. Peripheral nerves lacking Srebf1c show decreased FA synthesis and glycolytic flux, but increased FA catabolism and mitochondrial function. These metabolic alterations are the result of local accumulation of two endogenous peroxisome proliferator-activated receptor-α (Pparα) ligands, 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine and 1-stearoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine. Treatment with a Pparα antagonist rescues the neuropathy of Srebf1c-null mice. These findings reveal the importance of peripheral nerve FA synthesis to sustain myelin structure and function.


Subject(s)
Fatty Acids/metabolism , Myelin Sheath/metabolism , Neuroglia/metabolism , Peripheral Nervous System Diseases/etiology , Sterol Regulatory Element Binding Protein 1/deficiency , Analysis of Variance , Animals , Blotting, Western , Chromatography, High Pressure Liquid , Metabolomics , Mice , Mice, Knockout , Microarray Analysis , Microscopy, Electron, Transmission , Myelin Sheath/ultrastructure , Oxazoles/pharmacology , PPAR alpha/antagonists & inhibitors , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/metabolism , Real-Time Polymerase Chain Reaction , Tyrosine/analogs & derivatives , Tyrosine/pharmacology
12.
J Cell Biol ; 208(3): 313-29, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25646087

ABSTRACT

Fast neural conduction requires accumulation of Na(+) channels at nodes of Ranvier. Dedicated adhesion molecules on myelinating cells and axons govern node organization. Among those, specific laminins and dystroglycan complexes contribute to Na(+) channel clustering at peripheral nodes by unknown mechanisms. We show that in addition to facing the basal lamina, dystroglycan is found near the nodal matrix around axons, binds matrix components, and participates in initial events of nodogenesis. We identify the dystroglycan-ligand perlecan as a novel nodal component and show that dystroglycan is required for the selective accumulation of perlecan at nodes. Perlecan binds the clustering molecule gliomedin and enhances clustering of node of Ranvier components. These data show that proteoglycans have specific roles in peripheral nodes and indicate that peripheral and central axons use similar strategies but different molecules to form nodes of Ranvier. Further, our data indicate that dystroglycan binds free matrix that is not organized in a basal lamina.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Heparan Sulfate Proteoglycans/metabolism , Ranvier's Nodes/metabolism , Animals , Cells, Cultured , Coculture Techniques , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Humans , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Microvilli/metabolism , Protein Binding , Protein Transport , Proteolysis , Sodium Channels/metabolism
13.
Brain ; 135(Pt 7): 2032-47, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22689911

ABSTRACT

Mutations in myelin protein zero (MPZ) cause Charcot-Marie-Tooth disease type 1B. Many dominant MPZ mutations, including R98C, present as infantile onset dysmyelinating neuropathies. We have generated an R98C 'knock-in' mouse model of Charcot-Marie-Tooth type 1B, where a mutation encoding R98C was targeted to the mouse Mpz gene. Both heterozygous (R98C/+) and homozygous (R98C/R98C) mice develop weakness, abnormal nerve conduction velocities and morphologically abnormal myelin; R98C/R98C mice are more severely affected. MpzR98C is retained in the endoplasmic reticulum of Schwann cells and provokes a transitory, canonical unfolded protein response. Ablation of Chop, a mediator of the protein kinase RNA-like endoplasmic reticulum kinase unfolded protein response pathway restores compound muscle action potential amplitudes of R98C/+ mice but does not alter the reduced conduction velocities, reduced axonal diameters or clinical behaviour of these animals. R98C/R98C Schwann cells are developmentally arrested in the promyelinating stage, whereas development is delayed in R98C/+ mice. The proportion of cells expressing c-Jun, an inhibitor of myelination, is elevated in mutant nerves, whereas the proportion of cells expressing the promyelinating transcription factor Krox-20 is decreased, particularly in R98C/R98C mice. Our results provide a potential link between the accumulation of MpzR98C in the endoplasmic reticulum and a developmental delay in myelination. These mice provide a model by which we can begin to understand the early onset dysmyelination seen in patients with R98C and similar mutations.


Subject(s)
Cell Differentiation/physiology , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Myelin P0 Protein/physiology , Schwann Cells/cytology , Schwann Cells/metabolism , Action Potentials/physiology , Animals , Axons/pathology , Axons/physiology , Axons/ultrastructure , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Early Growth Response Protein 2/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Developmental/physiology , Gene Knock-In Techniques/methods , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Myelin P0 Protein/genetics , Myelin Sheath/genetics , Myelin Sheath/pathology , Neural Conduction/physiology , Proto-Oncogene Proteins c-jun/biosynthesis , Rotarod Performance Test/methods , Schwann Cells/ultrastructure , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Sciatic Nerve/ultrastructure , Transcription Factor CHOP/metabolism , Unfolded Protein Response/physiology
14.
Hum Mol Genet ; 20(11): 2081-90, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21363884

ABSTRACT

More than 120 mutations in the Myelin Protein Zero gene (MPZ, P0) cause various forms of hereditary neuropathy. Two human mutations encoding either P0S63C or P0S63del have been shown to cause demyelination in mice through different gain of function pathomechanisms. P0S63del, for example, is retained in the endoplasmic reticulum (ER) and elicits a pathogenetic unfolded protein response (UPR). As P0 likely forms oligomers, another gain of abnormal function could include a dominant-negative interaction between P0S63del and normal P0 (P0wt). To test this idea, we generated a transgenic mouse that expressed a form of P0wt with a myc epitope tag at the C terminus (P0ct-myc). We show that P0ct-myc is trafficked and functions like P0wt, thus providing a new tool to study P0 in vivo. In mice that express both P0ct-myc and P0S63del, P0S63del specifically delays the transit of P0ct-myc through the ER and reduces the level of P0wt in the myelin sheath by half-a level previously shown to cause demyelination in mice and humans. Surprisingly, P0ct-myc does not co-immunoprecipitate with P0S63del, suggesting an indirect interaction. Thus, P0S63del causes not only a UPR-related toxic mechanism, but also a dominant-negative effect on P0wt that probably contributes to demyelinating neuropathy.


Subject(s)
Demyelinating Diseases/pathology , Endoplasmic Reticulum/metabolism , Myelin P0 Protein/genetics , Myelin P0 Protein/metabolism , Myelin Sheath/pathology , Animals , Blotting, Western , Demyelinating Diseases/genetics , Disease Models, Animal , Epitopes/genetics , Gene Expression , Genes, myc , Humans , Immunoprecipitation , Mice , Mice, Transgenic , Microscopy, Immunoelectron , Mutagenesis, Site-Directed , Mutation , Protein Transport
15.
PLoS One ; 5(1): e8882, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-20111708

ABSTRACT

Exogenous expression of pharmacological targets in transformed cell lines has been the traditional platform for high throughput screening of small molecules. However, exogenous expression in these cells is limited by aberrant dosage, or its toxicity, the potential lack of interaction partners, and alterations to physiology due to transformation itself. Instead, primary cells or cells differentiated from precursors are more physiological, but less amenable to exogenous expression of reporter systems. To overcome this challenge, we stably expressed c-Photina, a Ca(2+)-sensitive photoprotein, driven by a ubiquitous promoter in a mouse embryonic stem (mES) cell line. The same embryonic stem cell line was also used to generate a transgenic mouse that expresses c-Photina in most tissues. We show here that these cells and mice provide an efficient source of primary cells, cells differentiated from mES cells, including cardiomyocytes, neurons, astrocytes, macrophages, endothelial cells, pancreatic islet cells, stably and robustly expressing c-Photina, and may be exploited for miniaturized high throughput screening. Moreover, we provide evidence that the transgenic mice may be suitable for ex-vivo bioimaging studies in both cells and tissues.


Subject(s)
Calcium/metabolism , Embryonic Stem Cells/metabolism , Luminescent Proteins/metabolism , Animals , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells/cytology , Mice , Mice, Transgenic
16.
J Neurochem ; 93(3): 737-48, 2005 May.
Article in English | MEDLINE | ID: mdl-15836632

ABSTRACT

Myelination of peripheral nerves by Schwann cells requires a large amount of lipid and cholesterol biosynthesis. To understand the transcriptional coordination of the myelination process, we have investigated the developmental relationship between early growth response 2 (Egr2)/Krox20--a pivotal regulator of peripheral nerve myelination--and the sterol regulatory element binding protein (SREBP) pathway, which controls expression of cholesterol/lipid biosynthetic genes. During myelination of sciatic nerve, there is a very significant induction of SREBP1 and SREBP2, as well as their target genes, suggesting that the SREBP transactivators are important regulators in the myelination process. Egr2/Krox20 does not appear to directly regulate the levels of SREBP pathway components, but rather, we found that Egr2/Krox20 and SREBP transactivators can synergistically activate promoters of several SREBP target genes, indicating that direct induction of cholesterol/lipid biosynthetic genes by Egr2/Krox20 is a part of the myelination program regulated by this transactivator.


Subject(s)
Cholesterol/biosynthesis , Cholesterol/genetics , DNA-Binding Proteins/physiology , Myelin Sheath/physiology , Nerve Fibers, Myelinated/physiology , Sciatic Nerve/physiology , Transcription Factors/physiology , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/physiology , Cell Line , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Drug Synergism , Early Growth Response Protein 2 , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Myelin Sheath/genetics , Peripheral Nerves/physiology , Sciatic Nerve/metabolism , Sterol Regulatory Element Binding Protein 1 , Sterol Regulatory Element Binding Protein 2 , Transcription Factors/biosynthesis , Transcription Factors/deficiency , Transcription Factors/genetics
17.
J Neuroimmunol ; 122(1-2): 94-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11777547

ABSTRACT

Myasthenia gravis (MG) is a multifactorial autoimmune disease of the neuromuscular junction. We investigated the relation between four polymorphisms of the interleukin (IL)-1 gene cluster on 2q12-22, and MG susceptibility and clinical features in a large cohort of individuals. No polymorphism was associated with MG susceptibility. However, the IL-1A -889 CC genotype was associated with early disease onset (p=0.0044) in the whole MG group and the subgroup of CC males developed MG about 18 years earlier than males carrying other IL-1A -889 genotypes (p=0.022). This finding suggests that IL-1A is a disease modifier in MG, or is in linkage disequilibrium with an unknown locus on chromosome 2.


Subject(s)
Interleukin-1/genetics , Myasthenia Gravis/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Age of Onset , Aged , Cohort Studies , Disease-Free Survival , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...