Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(23): 28594-28605, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37265075

ABSTRACT

Fully biobased and biodegradable materials have attracted a growing interest in the food packaging sector as they can help to reduce the negative impact of fossil-based plastics on the environment. Moreover, the addition of functionalities to these materials by introducing active molecules has become an essential requirement to create modern packaging able to extend food's shelf-life while informing the consumer about food quality and freshness. In this study, we present an innovative bioplastic formulation for food packaging based on poly(hydroxybutyrate-co-valerate) (PHBV) and tannins as multifunctional additives. As a proof of concept, PHBV/tannin films were prepared by solvent casting, increasing the tannin content from 1 to 10 per hundred of resin (phr). Formic acid was used to reach a homogeneous distribution of the hydrophilic tannins into hydrophobic PHBV, which is remarkably challenging by using other solvents. Thanks to their well-known properties, the effect of tannins on the antioxidant, UV protection, and gas barrier properties of PHBV was evaluated. Samples containing 5 phr bioadditive revealed the best combination of these properties, also maintaining good transparency. Differential scanning calorimetry (DSC) investigations revealed that films are suitable for application from the fridge to potentially high temperatures for food heating (up to 200 °C). Tensile tests have also shown that Young's modulus (900-1030 MPa) and tensile strength (20 MPa) are comparable with those of the common polymers and biopolymers for packaging. Besides the improvement of the PHBV properties for extending food's shelf-life, it was also observed that PHBV/tannin could colorimetrically detect ammonia vapors, thus making this material potentially applicable as a smart indicator for food spoilage (e.g., detection of fish degradation). The presented outcomes suggest that tannins can add multifunctional properties to a polymeric material, opening up a new strategy to obtain an attractive alternative to petroleum-based plastics for smart food packaging applications.


Subject(s)
Polyhydroxyalkanoates , Animals , Tannins , Food Packaging , Biopolymers/chemistry , Plastics
2.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37079732

ABSTRACT

MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1.


Subject(s)
Software , Humans , Animals , Cluster Analysis , Time Factors , Disease Models, Animal , Risk Assessment
3.
Polymers (Basel) ; 15(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36987218

ABSTRACT

A significant mechanical properties mismatch between natural bone and the material forming the orthopedic implant device can lead to its failure due to the inhomogeneous loads distribution, resulting in less dense and more fragile bone tissue (known as the stress shielding effect). The addition of nanofibrillated cellulose (NFC) to biocompatible and bioresorbable poly(3-hydroxybutyrate) (PHB) is proposed in order to tailor the PHB mechanical properties to different bone types. Specifically, the proposed approach offers an effective strategy to develop a supporting material, suitable for bone tissue regeneration, where stiffness, mechanical strength, hardness, and impact resistance can be tuned. The desired homogeneous blend formation and fine-tuning of PHB mechanical properties have been achieved thanks to the specific design and synthesis of a PHB/PEG diblock copolymer that is able to compatibilize the two compounds. Moreover, the typical high hydrophobicity of PHB is significantly reduced when NFC is added in presence of the developed diblock copolymer, thus creating a potential cue for supporting bone tissue growth. Hence, the presented outcomes contribute to the medical community development by translating the research results into clinical practice for designing bio-based materials for prosthetic devices.

4.
Clin Cancer Res ; 29(6): 1102-1113, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36622698

ABSTRACT

PURPOSE: Approximately 20% of patients with RAS wild-type metastatic colorectal cancer (mCRC) experience objective responses to the anti-EGFR antibody cetuximab, but disease eradication is seldom achieved. The extent of tumor shrinkage correlates with long-term outcome. We aimed to find rational combinations that potentiate cetuximab efficacy by disrupting adaptive dependencies on antiapoptotic molecules (BCL2, BCL-XL, MCL1). EXPERIMENTAL DESIGN: Experiments were conducted in patient-derived xenografts (PDX) and organoids (PDXO). Apoptotic priming was analyzed by BH3 profiling. Proapoptotic and antiapoptotic protein complexes were evaluated by co-immunoprecipitation and electroluminescence sandwich assays. The effect of combination therapies was assessed by caspase activation in PDXOs and by monitoring PDX growth. RESULTS: A population trial in 314 PDX cohorts, established from as many patients, identified 46 models (14.6%) with appreciable (>50% tumor shrinkage) but incomplete response to cetuximab. From these models, 14 PDXOs were derived. Cetuximab primed cells for apoptosis, but only concomitant blockade of BCL-XL precipitated cell death. Mechanistically, exposure to cetuximab induced upregulation of the proapoptotic protein BIM and its sequestration by BCL-XL. Inhibition of BCL-XL resulted in displacement of BIM, which was not buffered by MCL1 and thereby became competent to induce apoptosis. In five PDX models, combination of cetuximab and a selective BCL-XL inhibitor triggered apoptosis and led to more pronounced tumor regressions and longer time to relapse after treatment discontinuation than cetuximab alone. CONCLUSIONS: In mCRC tumors that respond to cetuximab, antibody treatment confers a synthetic-lethal dependency on BCL-XL. Targeting this dependency unleashes apoptosis and increases the depth of response to cetuximab.


Subject(s)
Colonic Neoplasms , Neoplasm Recurrence, Local , Humans , Cetuximab/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Apoptosis Regulatory Proteins/metabolism , Apoptosis , bcl-X Protein/genetics , Proto-Oncogene Proteins c-bcl-2
5.
Bioorg Med Chem ; 28(22): 115731, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007550

ABSTRACT

The medicinal chemist toolbox is plenty of (bio)isosteres when looking for a carboxylic acid replacement. However, systematic assessment of acid surrogates is often time consuming and expensive, while prediction of both physicochemical properties (logP and logD) as well as acidity would be desirable at early discovery stages for a better analog design. Herein in this work, to enable decision making on a project, we have synthesized by employing a Diversity-Oriented Synthetic (DOS) methodology, a small library of molecular fragments endowed with acidic properties. By combining in-silico and experimental methodologies these compounds were chemically characterized and, particularly, with the aim to know their physicochemical properties, the aqueous ionization constants (pKa), partition coefficients logD and logP of each fragment was firstly estimated by using molecular modeling studies and then validated by experimental determinations. A face to face comparison between data and the corresponding carboxylic acid might help medicinal chemists in finding the best replacement to be used. Finally, in the framework of Fragment Based Drug Design (FBDD) the small library of fragments obtained with our approach showed good versatility both in synthetic and physico-chemical properties.


Subject(s)
Carboxylic Acids/chemical synthesis , Drug Design , Carboxylic Acids/chemistry , Databases, Factual , Models, Molecular , Molecular Structure
6.
J Chromatogr A ; 1621: 461075, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32354558

ABSTRACT

The role of individual functional groups has been assessed with regard to surface charge and chromatographic retention. Coatings were prepared from various fragments of the chiral zwitterionic materials Chiralpak ZWIX(+) and ZWIX(-). The different chromatographic ligands allowed fine tuning of the surface charge. Chiralpak ZWIX phases showed strongly negative ζ-potentials over the entire pH-range. Zwitterionic congeners with quinuclidine and sulfonic acid moieties but lacking the quinolone ring in the ligand structure exhibited shifted ζ-potentials of around + 5 to 20 mV depending on the surrounding residues. Capillary electrophoretic mobilitiy measurements with the chromatographic ligands and molecular dynamics simulations were carried out to offer some explanation of these surface charge differences of the distinct zwitterionic stationary phases. The new mixed-mode phases were also chromatographically characterized by simple RP and HILIC tests. The results allowed their positioning within a large variety of different commercially available RP, HILIC and mixed-mode phases, which were evaluated as well, by multivariate data processing using principal component analysis. The new mixed-mode phases overall exhibit reasonable hydrophilicity-lipophilicity balance and enable retention of ionic compounds by additional ionic interactions through weak anion-exchange (WAX-type), strong cation-exchange (SCX-type) or both (RP/ZWIX-type). Hence, the new RP/ZWIX phases can be flexible tools for selectivity tuning in RP and HILIC separations.


Subject(s)
Chromatography, Ion Exchange/methods , Anions/chemistry , Cations/chemistry , Electrophoresis, Capillary , Hydrophobic and Hydrophilic Interactions , Ligands , Molecular Dynamics Simulation
7.
Anal Chim Acta ; 1093: 168-179, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31735211

ABSTRACT

Two-dimensional liquid chromatography requires orthogonal columns and/or separation principles in the first and second separation dimension. It is sometimes not straightforward to achieve. Chiral columns could expand the toolbox for 2D-LC, but are rarely exploited for this purpose, not least due to missing understanding of retention principles under non-chiral application conditions. To gain more insight, in this study Chiralpak ZWIX(+) and ZWIX(-), based on zwitterionic quinine and quinidine carbamate selectors, were carefully characterized by molecular dynamics simulations, lipophilicity/hydrophilicity measurements of selectors, pH-dependent ζ-potential determinations, and chromatographic characterization in RPLC and HILIC modes combined with unsupervised principal component analysis to extract classification of these columns in comparison to a number of commercial benchmarks (RP, HILIC and mixed-mode columns). The results showed that these chiral columns can be classified as mixed-mode chromatography phases with balanced lipophilic-hydrophilic surface character, excess of negative net charge due to sulfonic acid groups (in spite of weakly basic quinuclidine and quinoline rings), and multimodal applicability (RP, HILIC and polar organic elution modes). Orthogonality mapping in comparison to a number of modern HILIC and mixed-mode columns revealed that Poroshell HILIC-Z (with a zwitterionic ligand on 2.7 µm core-shell particles) can be beneficially combined as second dimension with the ZWIX column for comprehensive LC × LC. The online hyphenation of this 2D-LC system with complementary detection modalities including UV (DAD for chromophoric substances), charged aerosol detection (for universal detection and calibration of non-volatile analytes) and high-resolution mass spectrometry (ESI-QTOF-MS/MS for identification) provided an advanced method for comprehensive impurity profiling, applicable for instance for amino acid pharmaceutical products.

8.
J Chromatogr A ; 1612: 460689, 2020 Feb 08.
Article in English | MEDLINE | ID: mdl-31733894

ABSTRACT

Chiralpak ZWIX(+) and ZWIX(-), are brush-type bonded-silica chiral stationary phases (CSPs), based on complex diastereomeric Cinchona alkaloids derivatives bearing both a positive and a negative charge. In the present study, we aimed to improve the understanding of retention and enantioseparation mechanisms of these CSPs employed in supercritical fluid chromatography (SFC). For this purpose, 9 other stationary phases were used as comparison systems: two of them are commercially available and bear only a positive charge (Chiralpak QN-AX and QD-AX) and the 7 others were designed purposely to be structurally similar to the parent ZWIX phases, but miss some portion of the complex ligand. First, cluster analysis was employed to identify similar and dissimilar behavior among the 11 stationary phases, where ionic interactions appeared to dominate the observed differences. Secondly, the stationary phases were characterized with linear solvation energy relationships (LSER) based on the SFC analysis of 161 achiral analytes and a modified version of the solvation parameter model to include ionic interactions. This served to compare the interaction capabilities for the 11 stationary phases and showed in particular the contribution of attractive and repulsive ionic interactions. Then the ZWIX phases were characterized for their enantioseparation capabilities with a set of 58 racemic probes. Discriminant analysis was applied to explore the molecular structural features that are useful to successful enantioseparation on the ZWIX phases. In particular, it appeared that the presence of positive charges in the analyte is causing increased retention but is not necessarily a favorable feature to enantiorecognition. On the opposite, the presence of negative charges in the analyte favors early elution and enantiorecognition. Finally, a smaller set of 30 pairs of enantiomers, selected by their structural diversity and different enantioseparation values on the ZWIX phases, were analyzed on all chiral phases to observe the contribution of each structural fragment of the chiral ligand on enantioselectivity. Molecular modelling of the ligands also helped in understanding the three-dimensional arrangement of each ligand, notably the intra-molecular hydrogen bonding or the possible contribution of ionic interactions. In the end, each structural element in the ZWIX phases appeared to be a significant contributor to successful enantioresolution, whether they contribute as direct interaction groups (ion-exchange functions) or as steric constraints to orientate the interacting groups towards the analytes.


Subject(s)
Chromatography, Supercritical Fluid/methods , Cinchona/chemistry , Cluster Analysis , Discriminant Analysis , Hydrogen Bonding , Ions/chemistry , Oxazepam/chemistry , Stereoisomerism , Warfarin/chemistry
9.
Electrophoresis ; 39(20): 2558-2565, 2018 10.
Article in English | MEDLINE | ID: mdl-29998461

ABSTRACT

Thiol-ene click reaction of N-acetyl-L-cysteine methyl ester to codeine, followed by reaction with allyl isocyanate and hydrolysis to the corresponding zwitterionic chiral selector and its subsequent bonding to the surface of a methacrylate monolith provided a new chiral capillary column for enantiomer separation of chiral acids and chiral bases. First, the epoxy groups of a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith were converted into amine residues, followed by reaction with allylglycidyl ether. In this way, a spacer arm was bonded to the surface before coating and cross-linking poly(3-mercaptopropyl methylsiloxane) (PMPMS) via radical addition (thiol-ene click reaction) to the surface. In order to improve the performance of the monolithic chiral stationary phase, thio ether and residual thiol groups were oxidized to sulfonyl and sulphonate groups, respectively. This novel chiral stationary phase (CSP) was evaluated by capillary electrochromatography (CEC) using two chiral model compounds, namely N-3,5-dinitrobenzoyl-R,S-leucine (retained by anion-exchange mechanism) and mefloquine (by cation-exchange process). The ion-exchange retention mechanism on the CSP was characterized for these two counterionic model solutes by varying the mobile phase composition, including the nature of solvents, the concentration of counter-ions and co-ions, and the acid-to-base ratio. A series of chiral ß-blockers and amino acid derivatives was used to further check the performance of the modified monolith under the optimal conditions. Several enantiomers were baseline resolved with reasonable peak efficiencies (up to 60,000 theoretical plates per meter for the second eluted enantiomer).


Subject(s)
Capillary Electrochromatography/methods , Codeine/chemistry , Methacrylates/chemistry , Hydrogen-Ion Concentration , Leucine/analogs & derivatives , Leucine/chemistry , Leucine/isolation & purification , Mefloquine/chemistry , Mefloquine/isolation & purification , Models, Chemical , Siloxanes/chemistry , Stereoisomerism
10.
J Chromatogr A ; 1558: 29-36, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29759645

ABSTRACT

A cardinal requirement for effective 2D-HPLC separations is sufficient complementarity in the retention profiles of first and second dimension separations. It is shown that retention and enantioselectivity of chiral selectors derived from cinchona alkaloids can be conveniently modulated by structural variation of the carbamate residue of the quinine/quinidine carbamate ligand of such chiral stationary phases (CSP). A variety of aliphatic and aromatic residues have been tested in comparison to non-carbamoylated quinine CSP. Various measures of orthogonality have been utilized to derive the CSP that is most complementary to the tert-butylcarbamoylated quinine CSP (tBuCQN CSP), which is commercially available as Chiralpak QN-AX column. It turned out that O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinine is most promising in this respect. Its implementation as a complementary CSP for the separation of amino acids derivatized with Sanger's reagent (2,4-dinitrophenylated amino acids) in the first dimension combined with a tBuCQN CSP in the second dimension revealed successful enantiomer separations in a comprehensive chiral×chiral 2D-HPLC setup. However, the degree of complementarity could be greatly enhanced when simultaneously the absolute configurations were exchanged from quinine to quinidine in the chiral selector of the first dimension separation resulting in opposite elution orders of the enantiomers in the two dimensions. The advantage of such a chiral×chiral over achiral×chiral 2D-HPLC setup, amongst others, is the perfect compatibility of the mobile phase because in both dimensions the identical eluent can be used.


Subject(s)
Amino Acids/analysis , Carbamates/chemistry , Chromatography, High Pressure Liquid/methods , Cinchona/chemistry , Amino Acids/chemistry , Principal Component Analysis , Quinidine/chemistry , Quinolines/chemistry , Stereoisomerism
11.
Br J Pharmacol ; 175(2): 272-283, 2018 01.
Article in English | MEDLINE | ID: mdl-28320070

ABSTRACT

BACKGROUND AND PURPOSE: Dexpramipexole, a drug recently tested in patients with amyotrophic lateral sclerosis (ALS,) is able to bind F1Fo ATP synthase and increase mitochondrial ATP production. Here, we have investigated its effects on experimental ischaemic brain injury. EXPERIMENTAL APPROACH: The effects of dexpramipexole on bioenergetics, Ca2+ fluxes, electrophysiological functions and death were evaluated in primary neural cultures and hippocampal slices exposed to oxygen-glucose deprivation (OGD). Effects on infarct volumes and neurological functions were also evaluated in mice following proximal or distal middle cerebral artery occlusion (MCAo). Distribution of dexpramipexole within the ischaemic brain was evaluated by means of mass spectrometry imaging. KEY RESULTS: Dexpramipexole increased mitochondrial ATP production in cultured neurons or glia and reduces energy failure, prevents intracellular Ca2+ overload and affords cytoprotection when cultures are exposed to OGD. This compound also counteracted ATP depletion, mitochondrial swelling, anoxic depolarization, loss of synaptic activity and neuronal death in hippocampal slices subjected to OGD. Post-ischaemic treatment with dexpramipexole, at doses consistent with those already used in ALS patients, reduced brain infarct size and ameliorated neuroscore in mice subjected to transient or permanent MCAo. Notably, the concentrations of dexpramipexole reached within the ischaemic penumbra equalled those found neuroprotective in vitro. CONCLUSION AND IMPLICATIONS: Dexpramipexole, a compound able to increase mitochondrial F1Fo ATP-synthase activity reduced ischaemic brain injury. These findings, together with the excellent brain penetration and favourable safety profile in humans, make dexpramipexole a drug with realistic translational potential for the treatment of stroke. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Subject(s)
Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Energy Metabolism/drug effects , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Adenosine Triphosphate/metabolism , Animals , Benzothiazoles/pharmacokinetics , Calcium/metabolism , Cell Death/drug effects , Evoked Potentials/physiology , Hippocampus/metabolism , Hippocampus/physiology , Hippocampus/ultrastructure , Infarction, Middle Cerebral Artery , Male , Mice , Mitochondria/metabolism , Neurons/physiology , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Pramipexole , Primary Cell Culture , Rats , Stroke/metabolism
12.
Eur J Med Chem ; 142: 506-522, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29107427

ABSTRACT

Recent years have seen substantially heightened interest in the discovery of tankyrase inhibitors (TNKSi) as new promising anticancer agents. In this framework, the aim of this review article is focused on the description of potent TNKSi also endowed with disruptor activity toward the Wnt/ß-catenin signaling pathway. Beginning with an overview of the most characterized TNKSi deriving from several drug design approaches and classifying them on the basis of the molecular interactions with the target, we discuss only those ones acting against Wnt cancer cell lines. In addition, comprehensive structure property relationships (SPR) emerging from the hit evolution processes and preclinical results are provided. We then review the most promising TNKSi hitherto reported in literature, acting in vivo models of Wnt-driven cancers. Some outlooks on current issues and future directions in this field are also discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery , Neoplasms/drug therapy , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , Animals , Antineoplastic Agents/therapeutic use , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Molecular Targeted Therapy/methods , Neoplasms/metabolism , Tankyrases/metabolism
13.
ChemMedChem ; 11(12): 1219-26, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-26424664

ABSTRACT

Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.


Subject(s)
Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Polypharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Binding Sites , Female , Humans , Molecular Dynamics Simulation , Ovarian Neoplasms/drug therapy , Phthalazines/chemistry , Phthalazines/metabolism , Phthalazines/therapeutic use , Piperazines/chemistry , Piperazines/metabolism , Piperazines/therapeutic use , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinases/chemistry , Protein Kinases/metabolism
14.
Curr Opin Psychiatry ; 28(1): 46-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25420191

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to provide a comprehensive and critical examination of the empirical literature about the relation between patient personality and therapist countertransference. RECENT FINDINGS: The therapist's countertransference can play a crucial role in psychotherapy outcomes, especially in the treatment of personality disorders. The therapist's emotional responses to patients can accomplish the following: inform the clinician about the patient's personality, impact therapy outcome, influence patient resistance and elaboration, mediate the influence of the therapist's interventions and influence therapeutic alliance. SUMMARY: In the last years, several studies have empirically demonstrated the presence of a specific pattern of therapist responses that are related to different patient personality disorders. Other works showed how the effects of the therapist's technique depend on the emotional context in which they are delivered and in particular countertransference experiences. Moreover, researchers suggest that the therapist's emotional responses occur across all kinds of therapy and are independent of the therapist's theoretical preferences.


Subject(s)
Countertransference , Personality Disorders/therapy , Personality , Professional-Patient Relations , Psychotherapy , Empirical Research , Humans , Personality Disorders/psychology
15.
Eur J Med Chem ; 87: 611-23, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25299683

ABSTRACT

A virtual screening procedure was applied to identify new tankyrase inhibitors. Through pharmacophore screening of a compounds collection from the SPECS database, the methoxy[l]benzothieno[2,3-c]quinolin-6(5H)-one scaffold was identified as nicotinamide mimetic able to inhibit tankyrase activity at low micromolar concentration. In order to improve potency and selectivity, tandem structure-based and scaffold hopping approaches were carried out over the new scaffold leading to the discovery of the 2-(phenyl)-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one as powerful chemotype suitable for tankyrase inhibition. The best compound 2-(4-tert-butyl-phenyl)-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one (23) displayed nanomolar potencies (IC50s TNKS-1 = 21 nM and TNKS-2 = 29 nM) and high selectivity when profiled against several other PARPs. Furthermore, a striking Wnt signaling, as well as cell growth inhibition, was observed assaying 23 in DLD-1 cancer cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...