Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 22: 101362, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38633739

ABSTRACT

Grape seed residues represent the raw material to produce several value-added products including polyphenol-rich extracts with nutritional and health attributes. Although the impact of variety and environmental conditions on the polyphenol composition in fresh berries is recognized, no data are available regarding grape seed residues. The chemical composition of grape seed residues from wine distilleries in France, Spain and Italy was characterized by mass spectrometry. Forty-two metabolites were identified belonging to non-galloylated and galloylated procyanidins as well as amino acids. Polyphenol concentrations in the red varieties originated from Champagne or Veneto were twice higher than in white varieties from the Loire Valley. The chemical profiles of grape seed residues were mainly classified according to the color variety with galloylated procyanidins as biomarkers of white varieties and non-galloylated procyanidins as biomarkers of red ones. The present approach might assist the selection of grape seed residues as quality raw materials for the production of polyphenol-rich extracts.

2.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836711

ABSTRACT

The primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.


Subject(s)
Vitis , Vitis/chemistry , Antioxidants/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Phytochemicals , Chromatography, High Pressure Liquid
3.
Molecules ; 27(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807274

ABSTRACT

Grape canes represent a valuable source of numerous polyphenols with antioxidant properties, whose compositions vary depending on the genotype and environmental factors. Antioxidant activities of pure molecules are often reported without considering possible interactions that may occur in complex polyphenol mixture. Using UPLC-MS-based metabolomics and unsupervised classification, we explored the polyphenol variations in grape cane extracts from a collection of European varieties. Antioxidant activities were assessed using ORAC, ABTS, DPPH, FRAP, CUPRAC and chelation assays. Pairwise correlations between polyphenols and antioxidant capacities were performed to identify molecules that contributed more to the antioxidant capacities within a complex mixture of polyphenols.


Subject(s)
Polyphenols , Vitis , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, Liquid , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Tandem Mass Spectrometry , Vitis/chemistry
4.
Molecules ; 26(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361665

ABSTRACT

In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.


Subject(s)
Anti-Inflammatory Agents/analysis , Antioxidants/analysis , Butylene Glycols/analysis , Cotyledon/chemistry , Flax/chemistry , Furans/analysis , Hypocotyl/chemistry , Lignans/analysis , Plant Extracts/analysis , Biomass , Chromatography, High Pressure Liquid/methods , Cotyledon/metabolism , Culture Media/chemistry , Culture Techniques/methods , Flax/metabolism , Hypocotyl/metabolism , Naphthaleneacetic Acids/pharmacology , Phenols/analysis , Phenylurea Compounds/pharmacology , Plant Growth Regulators/pharmacology , Thiadiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...