Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Mech Methods ; 12(4): 241-54, 2002.
Article in English | MEDLINE | ID: mdl-20021166

ABSTRACT

Ethylene glycol monomethyl ether (EGME) and ethylene glycol monomethyl ether acetate (EGMEA) have been tested for their acute and chronic toxicity to various organisms occupying different trophic levels in the aquatic ecosystems. The results obtained in this study and those collected from the literature clearly reveal that EGME does not present short- or long-term ecotoxic effects in the ranges of concentrations likely to be found in aquatic environments. Indeed, in general, concentrations of 1000 to 10,000 mg/L of EGME are necessary before significant adverse effects can be observed in aquatic species. Conversely, acute toxicity occurs in fish at about 50 mg/L of EGMEA, and reproduction of Ceriodaphnia dubia is affected by 0.06 mg/L of this chemical. A teratogenic effect-with a specific malformation of the eyes-occurs in Xenopus laevis in the presence of 75 mg/L of EGMEA. This study was partially supported by the French Ministry of the Environment as part of the PNETOX program (1998).

2.
Toxicol Mech Methods ; 12(4): 255-63, 2002.
Article in English | MEDLINE | ID: mdl-20021167

ABSTRACT

Ethylene glycol monobutyl ether (EGBE) and ethylene glycol monobutyl ether acetate (EGBEA) were tested for their acute and chronic toxicity to various organisms occupying different trophic levels in the aquatic ecosystems. The obtained results and those collected from the literature clearly show that EGBE affects the survival, growth, and reproduction of aquatic organisms only at concentrations of approximately 100 mg/L or more. EGBEA appears to be slightly more ecotoxic to aquatic species. At 1000 and 10,000 mg/L, both chemicals strongly affect the early stages of development of the Japanese oyster, but such concentrations are too high to be found in aquatic environments. Micronucleus tests on Xenopus laevis show that EGBE and EGBEA are not genotoxic in the range of concentrations tested. Consequently, neither chemical presents a risk to the aquatic environment. EGBE does affect the gonadosomatic index of adult male zebra fish (Danio rerio); however, these are preliminary results and must be confirmed by additional experiments. This study was partially supported by the French Ministry of the Environment as part of the PNETOX program (1998).

SELECTION OF CITATIONS
SEARCH DETAIL
...