Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35957161

ABSTRACT

Due to their various properties as polymeric materials, plastics have been produced, used and ultimately discharged into the environment. Although some studies have shown their negative impacts on the marine environment, the effects of plastics on freshwater organisms are still poorly studied, while they could be widely in contact with this pollution. The current work aimed to better elucidate the impact and the toxicity mechanisms of two kinds of commercial functionalized nanoplastics, i.e., carboxylated polystyrene microspheres of, respectively, 350 and 50 nm (PS350 and PS50), and heteroaggregated PS50 with humic acid with an apparent size of 350 nm (PSHA), all used at environmental concentrations (0.1 to 100 µg L-1). For this purpose, two relevant biological and aquatic models-amphibian larvae, Xenopus laevis, and dipters, Chironomus riparius-were used under normalized exposure conditions. The acute, chronic, and genetic toxicity parameters were examined and discussed with regard to the fundamental characterization in media exposures and, especially, the aggregation state of the nanoplastics. The size of PS350 and PSHA remained similar in the Xenopus and Chironomus exposure media. Inversely, PS50 aggregated in both exposition media and finally appeared to be micrometric during the exposition tests. Interestingly, this work highlighted that PS350 has no significant effect on the tested species, while PS50 is the most prone to alter the growth of Xenopus but not of Chironomus. Finally, PSHA induced a significant genotoxicity in Xenopus.

2.
Water Res ; 217: 118396, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35413563

ABSTRACT

In intermittent rivers, which represent a prominent part of worldwide rivers, aquatic organisms are exposed to sequential disturbances including flow cessation, potentially associated with water warming, desiccation process and flow resumption. At flow resumption, pollutants stored in soil and washed by rainfalls can reach fresh waters. The interaction between contamination and river intermittency is poorly understood. In this study, we aimed at understanding in what extent the intensity of dry period combined or not to water warming drives the sensitivity of aquatic communities to a complex agricultural run-off (ARO) during rewetting. Phototrophic biofilms, at the basis of freshwater food webs, were chosen as a model of community. Biofilms grown in laboratory were first exposed to a disturbance crossing two temperature conditions (not warmed, 22°C or warmed, 32°C) and three dry periods (no drying, short (3 days), or long (3 months)). Then they were exposed to a chemical mix of nitrates, copper and 3 pesticides at 6 gradual concentrations. Various descriptors associated with biofilm structure and function were assessed one week after ARO addition. When undisturbed biofilms were exposed to ARO, they shifted toward a more heterotrophic state as they lost algal richness and diversity, and gross primary production tended to decrease. Warming alone only slightly modified the sensitivity of biofilms to ARO, with lower effects on algal richness and a trend to increase the effect on gross primary production. In contrast, the association of warming and a dry period strongly modified the sensitivity to ARO, certainly due to the selection of generalist species and/or physiological acclimation inducted by the first disturbance. This study emphasizes the importance of considering water intermittency in the management of the ecological risk of chemicals in aquatic ecosystems.


Subject(s)
Microbiota , Water Pollutants, Chemical , Agriculture , Biofilms , Droughts , Microbiota/physiology , Rivers , Water/pharmacology , Water Pollutants, Chemical/pharmacology
3.
Front Microbiol ; 12: 742027, 2021.
Article in English | MEDLINE | ID: mdl-34707592

ABSTRACT

Phototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses. The aim of this study was to decipher to what extent slight modifications of environmental conditions could alter the resilience of phototrophic biofilm EPS to a realistic sequential disturbance (4-day copper exposure followed by a 14-day dry period). By using very simplified biofilms with a single algal strain, we focused solely on physiological effects. The biofilms, composed by the non-axenic strains of a green alga (Uronema confervicolum) or a diatom (Nitzschia palea) were grown in artificial channels in six different conditions of light intensity, temperature and phosphorous concentration. EPS quantity (total organic carbon) and quality (ratio protein/polysaccharide, PN/PS) were measured before and at the end of the disturbance, and after a 14-day rewetting period. The diatom biofilm accumulated more biomass at the highest temperature, with lower EPS content and lower PN/PS ratio while green alga biofilm accumulated more biomass at the highest light condition with lower EPS content and lower PN/PS ratio. Temperature, light intensity, and P concentration significantly modified the resistance and/or recovery of EPS quality and quantity, differently for the two biofilms. An increase in light intensity, which had effect neither on the diatom biofilm growth nor on EPS production before disturbance, increased the resistance of EPS quantity and the resilience of EPS quality. These results emphasize the importance of considering the modulation of community resilience ability by environmental conditions, which remains scarce in the literature.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668678

ABSTRACT

The environmental fate and behavior of nanoplastics (NPs) and their toxicity against aquatic organisms are under current investigation. In this work, relevant physicochemical characterizations were provided to analyze the ecotoxicological risk of NPs in the aquatic compartment. For this purpose, heteroaggregates of 50 nm polystyrene nanospheres and natural organic matter were prepared and characterized. The kinetic of aggregation was assimilated to a reaction-limited colloid aggregation mode and led to the formation of heteroaggregates in the range of 100-500 nm. Toxicities of these heteroaggregates and polystyrene nanospheres (50 and 350 nm) were assessed for a large range of concentrations using four benthic and one planktonic algal species, in regards to particle states in the media. Heteroaggregates and nanospheres were shown to be stable in the exposure media during the ecotoxity tests. The algal species exhibited very low sensitivity (growth and photosynthetic activity), with the noteworthy exception of the planktonic alga, whose growth increased by more than 150% with the heteroaggregates at 1 µg L-1. Despite the lack of a strong direct effect of the NPs, they may still impair the functioning of aquatic ecosystems by destabilizing the competitive interactions between species. Moreover, further work should assess the toxicity of NPs associated with other substances (adsorbed pollutants or additives) that could enhance the NP effects.

5.
Water Res ; 190: 116713, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33302039

ABSTRACT

Aquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate. Two experiments were performed to determine the direct effect of ARO on primary producers (submerged macrophytes, periphyton and phytoplankton) and on the grazing snail Lymnaea stagnalis, respectively. Three different ARO concentrations added as single doses or as multiple pulses at two different temperatures (22°C and 26°C) were applied. In a third experiment, primary producers and consumers were exposed together to allow trophic interactions. When functional groups were exposed alone, ARO had a direct positive effect on phytoplankton and a strong negative effect on L. stagnalis. When exposed together, primary producer responses were contrasting, as the negative effect of ARO on grazers led to an indirect positive effect on periphyton. Periphyton in turn exerted a strong control on phytoplankton, leading to an indirect negative effect of ARO on phytoplankton. Macrophytes showed little response to the stressors. Multiple pulse exposure increased the effect of ARO on L. stagnalis and periphyton when compared with the same quantity of ARO added as a single dose. The increase in temperature had only limited effects. Our results highlight the importance of indirect effects of stressors, here mediated by grazers and periphyton, and the frequency of the ARO input in aquatic ecosystems.


Subject(s)
Ecosystem , Global Warming , Agriculture , Animals , Lakes , Phytoplankton
6.
Environ Sci Pollut Res Int ; 26(34): 35107-35120, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31679142

ABSTRACT

In freshwater ecosystem, phototrophic biofilms play a crucial role through adsorption and sequestration of organic and inorganic pollutants. However, extracellular polymeric substance (EPS) secretion by phototrophic biofilms exposed to metals is poorly documented. This work evaluated the physiological responses of phototrophic biofilms by exposing three microorganisms (cyanobacterium Phormidium autumnale, diatom Nitzschia palea and green alga Uronema confervicolum) to 20 and 200 µg L-1 of Cu or 60 and 600 µg L-1 of Zn, both individually and in combination. Analysis of metal effects on algal biomass and photosynthetic efficiency showed that metals were toxic at higher concentrations for these two parameters together and that all the strains were more sensitive to Cu than to Zn. U. confervicolum was the most impacted in terms of growth, while P. autumnale was the most impacted in terms of photosynthetic efficiency. In consequence to metal exposure at higher concentrations (Cu200, Zn600 and Cu200Zn600), a higher EPS production was measured in diatom and cyanobacterium biofilms, essentially caused by an overproduction of protein-like polymers. On the other hand, the amount of secreted polysaccharides decreased during metal exposure of the diatom and green alga biofilms. Size exclusion chromatography revealed specific EPS molecular fingerprints in P. autumnale and N. palea biofilms that have secreted different protein-like polymers during their development in the presence of Zn600. These proteins were not detected in the presence of Cu200 despite an increase of proteins in the EPS extracts compared to the control. These results highlight interesting divergent responses between the three mono-species biofilms and suggest that increasing protein production in EPS biofilms may be a fingerprint of natural biofilm against metal pollutants in freshwater rivers.


Subject(s)
Biofilms/growth & development , Copper/toxicity , Zinc/toxicity , Biofilms/drug effects , Biomass , Copper/analysis , Cyanobacteria/metabolism , Diatoms/metabolism , Ecosystem , Extracellular Polymeric Substance Matrix , Fresh Water , Metals/analysis , Photosynthesis , Rivers , Zinc/analysis
7.
Environ Microbiol Rep ; 11(4): 605-614, 2019 08.
Article in English | MEDLINE | ID: mdl-31162878

ABSTRACT

Teleost fishes interact with diverse microbial communities, playing crucial functions for host fitness. While gut microbiome has been extensively studied, skin microbiome has been overlooked. Specifically, there is no assessment of the relative impact of host and environmental factors on microbiome variability as well as neutral processes shaping fish skin microbiome. Here, we assessed the skin microbiome of a Siluriforme, the European catfish (Silurus glanis) sampled in four sites located in Southwestern France. We assessed the relative roles of individual features (body size and genetic background), local environment and neutral processes in shaping skin microbiome. Catfish skin microbiome composition was distinct to that of other freshwater fish species previously studied with high abundances of Gammaproteobacteria and Bacteroidetes. We found no effect of catfish individual genotype and body size on the structure of its associated skin microbiome. Geographical location was the best catfish skin microbiome structure predictor, together with neutral models of microbiome assembly.


Subject(s)
Bacteria/isolation & purification , Catfishes/microbiology , Microbiota , Skin/microbiology , Animals , Bacteria/classification , Bacteria/genetics , France , Fresh Water/microbiology , Models, Biological , Phylogeography , Plankton/classification , Plankton/genetics , Plankton/isolation & purification
8.
Front Microbiol ; 10: 732, 2019.
Article in English | MEDLINE | ID: mdl-31040831

ABSTRACT

Autotrophic biofilms are complex and fundamental biological compartments of many aquatic ecosystems. In particular, these biofilms represent a major resource for many invertebrate consumers and the first ecological barrier against toxic metals. To date, very few studies have investigated the indirect effects of stressors on upper trophic levels through alterations of the quality of biofilms for their consumers. In a laboratory study, we investigated the single and combined effects of phosphorus (P) availability and silver, a re-emerging contaminant, on the elemental [carbon (C):nitrogen (N):P ratios] and biochemical (fatty acid profiles) compositions of a diatom-dominated biofilm initially collected in a shallow lake. We hypothesized that (1) P and silver, through the replacement of diatoms by more tolerant primary producer species, reduce the biochemical quality of biofilms for their consumers while (2) P enhances biofilm elemental quality and (3) silver contamination of biofilm has negative effects on consumers life history traits. The quality of biofilms for consumers was assessed for a common crustacean species, Gammarus fossarum, by measuring organisms' survival and growth rates during a 42-days feeding experiment. Results mainly showed that species replacement induced by both stressors affected biofilm fatty acid compositions, and that P immobilization permitted to achieve low C:P biofilms, whatever the level of silver contamination. Gammarids growth and survival rates were not significantly impacted by the ingestion of silver-contaminated resource. On the contrary, we found a significant positive relationship between the biofilm P-content and gammarids growth. This study underlines the large indirect consequences stressors could play on the quality of microbial biomass for consumers, and, in turn, on the whole food web.

SELECTION OF CITATIONS
SEARCH DETAIL
...