Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
J Dairy Sci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033922

ABSTRACT

The nutritive value of grass silage can be improved by harvesting herbage at a less mature growth stage, which in practice usually involves more frequent harvests. This study examined the performance of dairy cows offered grass silages produced from perennial ryegrass (Lolium perenne) based swards harvested at 2 different frequencies during the growing season (3-harvest (3H) vs. 5-harvest (5H)). Thirty-four mid-lactation (av. 147 d in milk) dairy cows (30 multiparous, 4 primiparous) were offered either 3H or 5H silages in a continuous design (21 wk) experiment. Within each treatment cows were offered silage from each harvest (in harvest number order) for a pre-determined number of days in proportion to herbage DM yield at each harvest. Silages were offered ad libitum while a common concentrate was offered to all cows at 12.0 kg per cow/d over the first 15 wk of the study, 8.0 kg per cow/d during wk 16 -19 and 6.0 kg cow/d during wk 20 - 21. Total yield of herbage harvested over the season from within 3H and 5H were 12.6 and 11.2 t DM/ha, respectively. Across all harvests the mean ME and CP concentration of silages were 10.9 MJ/kg DM and 131 g/kg DM for 3H, and 11.5 MJ/kg DM and 152 g/kg DM for 5H. Silage DMI was greater for cows offered 5H silages compared with 3H silages (14.1 vs. 11.7 kg/d, respectively). Cows offered 5H silages had a greater daily milk yield (33.5 vs. 31.9 kg) and ECM yield (37.4 vs. 35.6 kg) compared with cows offered 3H silages. Treatment had no effect on milk fat or protein concentration. Cows offered 5H silages produced milk with greater concentrations of CLA and n-3 fatty acids. Treatment had no effect on mean BW or BCS, or on efficiency metrics such as milk yield or ECM yield per kg of DMI. Molar proportions of VFA in ruminal fluid differed between the treatments, with cows offered 3H silages having higher proportion of total butyrate (15.9 vs. 14.4% of total VFA) and lower total valerate (3.2 vs. 3.7% of total VFA) compared with those offered 5H. The acetate: propionate and acetate plus butyrate: propionate ratios were unaffected by treatment. In conclusion, increasing herbage harvesting frequency from 3 to 5 times per year improved the nutritional value of the resulting silages, and this led to higher silage DMI, milk yield and ECM yield. However, overall production efficiency (ECM/DMI) was unaffected by treatment.

2.
J Dairy Sci ; 107(3): 1669-1684, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863287

ABSTRACT

At the individual cow level, suboptimum fertility, mastitis, negative energy balance, and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were (1) to assess the potential of milk mid-infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose), ketosis (ß-hydroxybutyrate [BHB] and acetone), mastitis (N-acetyl-ß-d-glucosaminidase activity [NAGase] and lactate dehydrogenase), and fertility (progesterone); (2) to test alternative methodologies to partial least squares (PLS) regression to better account for the specific asymmetric distribution of the biomarkers; and (3) to create robust models by merging large datasets from 5 international or national projects. Benefiting from this international collaboration, the dataset comprised a total of 9,143 milk samples from 3,758 cows located in 589 herds across 10 countries and represented 7 breeds. The samples were analyzed by reference chemistry for biomarker contents, whereas the MIR analyses were performed on 30 instruments from different models and brands, with spectra harmonized into a common format. Four quantitative methodologies were evaluated to address the strongly skewed distribution of some biomarkers. Partial least squares regression was used as the reference basis, and compared with a random modification of distribution associated with PLS (random-downsampling-PLS), an optimized modification of distribution associated with PLS (KennardStone-downsampling-PLS), and support vector machine (SVM). When the ability of MIR to predict biomarkers was too low for quantification, different qualitative methodologies were tested to discriminate low versus high values of biomarkers. For each biomarker, 20% of the herds were randomly removed within all countries to be used as the validation dataset. The remaining 80% of herds were used as the calibration dataset. In calibration, the 3 alternative methodologies outperform the PLS performances for the majority of biomarkers. However, in the external herd validation, PLS provided the best results for isocitrate, glucose-6P, free glucose, and lactate dehydrogenase (coefficient of determination in external herd validation [R2v] = 0.48, 0.58, 0.28, and 0.24, respectively). For other molecules, PLS-random-downsampling and PLS-KennardStone-downsampling outperformed PLS in the majority of cases, but the best results were provided by SVM for citrate, BHB, acetone, NAGase, and progesterone (R2v = 0.94, 0.58, 0.76, 0.68, and 0.15, respectively). Hence, PLS and SVM based on the entire dataset provided the best results for normal and skewed distributions, respectively. Complementary to the quantitative methods, the qualitative discriminant models enabled the discrimination of high and low values for BHB, acetone, and NAGase with a global accuracy around 90%, and glucose-6P with an accuracy of 83%. In conclusion, MIR spectra of milk can enable quantitative screening of citrate as a biomarker of energy deficit and discrimination of low and high values of BHB, acetone, and NAGase, as biomarkers of ketosis and mastitis. Finally, progesterone could not be predicted with sufficient accuracy from milk MIR spectra to be further considered. Consequently, MIR spectrometry can bring valuable information regarding the occurrence of energy deficit, ketosis, and mastitis in dairy cows, which in turn have major influences on their fertility and survival.


Subject(s)
Cattle Diseases , Ketosis , Mastitis , Female , Cattle , Animals , Milk , Isocitrates , Acetone , Acetylglucosaminidase , Progesterone , Citrates , Citric Acid , 3-Hydroxybutyric Acid , Biomarkers , Glucose , Ketosis/diagnosis , Ketosis/veterinary , L-Lactate Dehydrogenase , Mastitis/veterinary
3.
J Dairy Sci ; 106(8): 5805-5824, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37474362

ABSTRACT

Excessive negative energy balance in early lactation is linked to an increased disease risk but may be mitigated by appropriate nutrition. The liver plays central roles in both metabolism and immunity. Hepatic transcriptomic profiles were compared between 3 dietary groups in each of 40 multiparous and 18 primiparous Holstein-Friesian cows offered isonitrogenous grass silage-based diets with different proportions of concentrates: (1) low concentrate (LC, 30% concentrate + 70% grass silage); (2) medium concentrate (MC, 50% concentrate + 50% grass silage), or (3) high concentrate (HC, 70% concentrate + 30% grass silage). Liver biopsies were taken from all cows at around 14 d in milk for RNA sequencing, and blood metabolites were measured. The sequencing data were analyzed separately for primiparous and multiparous cows using CLC Genomics Workbench V21 (Qiagen Digital Insights), focusing on comparisons between HC and LC groups. More differentially expressed genes (DEG) were seen between the primiparous cows receiving HC versus LC diets than for multiparous cows (597 vs. 497), with only 73 in common, indicating differential dietary responses. Multiparous cows receiving the HC diet had significantly higher circulating glucose and insulin-like growth factor-1 and lower urea than those receiving the LC diet. In response to HC, only the multiparous cows produced more milk. In these animals, bioinformatic analysis indicated expression changes in genes regulating fatty acid metabolism and biosynthesis (e.g., ACACA, ELOVL6, FADS2), increased cholesterol biosynthesis (e.g., CYP7A1, FDPS, HMGCR), downregulation in hepatic AA synthesis (e.g., GPT, GCLC, PSPH, SHMT2), and decreased expression of acute phase proteins (e.g., HP, LBP, SAA2). The primiparous cows on the HC diet also downregulated genes controlling AA metabolism and synthesis (e.g., CTH, GCLC, GOT1, ODC1, SHMT2) but showed higher expression of genes indicative of inflammation (e.g., CCDC80, IL1B, S100A8) and fibrosis (e.g., LOX, LUM, PLOD2). This potentially adverse response to a HC diet in physically immature animals warrants further investigation.


Subject(s)
Poaceae , Silage , Female , Cattle , Animals , Silage/analysis , Transcriptome , Lactation/physiology , Diet/veterinary , Milk/metabolism , Liver
4.
Animal ; 16(7): 100562, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35709555

ABSTRACT

Nitrogen (N) excretion from livestock production systems is of significant environmental concern; however, few studies have investigated the effect of dietary CP concentration on N utilisation efficiency at different stages of lactation, and the interaction between dietary CP levels and stages of lactation on N utilisation. Holstein-Friesian dairy cows (12 primiparous and 12 multiparous) used in the present study were selected from a larger group of cows involved in a whole-lactation study designed to examine the effect of dietary CP concentration on milk production and N excretion rates at different stages of lactation. The total diet CP concentrations evaluated were 114 (low CP), 144 (medium CP) and 173 (high CP) g/kg DM, with diets containing (g/kg DM) 550 concentrates, 270 grass silage and 180 maize silage. During early (70-80 days), mid- (150-160 days) and late (230-240 days) lactation, the same 24 animals were transferred from the main cow house to metabolism units for measurements of feed intake, milk production and faeces and urine outputs. Diet had no effect on BW, body condition score, or milk fat, protein or lactose concentration, but DM intake, milk yield and digestibilities of DM, energy and N increased with increasing diet CP concentration. The effect of diet on milk yield was largely due to differences between the low and medium CP diets. Increasing dietary CP concentration significantly increased urine N/N intake and urine N/manure N, and decreased faecal N/N intake, milk N/N intake and manure N/N intake. Although increasing dietary CP level significantly increased urine N/milk yield and manure N/milk yield, differences in these two variables between low and medium CP diets were not significant. There was no significant interaction between CP level and stage of lactation on any N utilisation variable, indicating that the effects of CP concentration on these variables were similar between stages of lactation. These results demonstrated that a decrease in dietary CP concentration from high (173 g/kg DM) to medium level (144 g/kg DM) may be appropriate for Holstein-Friesian dairy cow to maintain milk production efficiency, whilst reducing both urine N and manure N as a proportion of N intake or milk production.


Subject(s)
Lactation , Manure , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Proteins/metabolism , Female , Milk/metabolism , Nitrogen/metabolism , Silage
5.
J Dairy Sci ; 105(4): 3153-3175, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123786

ABSTRACT

A diverse range of grassland-based milk production systems are practiced on dairy farms in temperate regions, with systems differing in relation to the proportion of grazed grass, conserved forages and concentrates in diet, calving season, duration of housing, cow genotype, and performance levels. The current study was conducted to examine performance within diverse grassland-based systems of milk production under experimental conditions. This study examined 4 milk production systems over 3 successive lactations (20 cows per system during each lactation). With winter calving-fully housed (WC-FH), Holstein cows were housed for the entire lactation and offered a complete diet consisting of grass silage, maize silage, and concentrates [approximately 50% forage on a dry matter (DM) basis]. With winter calving-conventional (WC-Con), Holstein cows were housed and offered the same diet from calving until turnout (late March) as offered with WC-FH, and thereafter cows were given access to grazing and supplemented with 5.0 kg of concentrate/cow daily. Two spring-calving systems were examined, the former involving Holstein cows (SC-H) and the latter Jersey × Holstein crossbred cows (SC-J×H). Cows on these systems were offered a grass silage-concentrate mix (70% forage on a DM basis) until turnout (late February), and thereafter cows were given access to grazing supplemented with 1.0 kg of concentrate/cow per day. The contributions of concentrates (3,080, 2,175, 722, and 760 kg of DM/cow per lactation), conserved forages (3,199, 1,556, 1,053, and 1,066 kg of DM/cow per lactation), and grazed grass (0, 2,041, 2,788, and 2,692 kg of DM/cow per lactation) to total DMI (6,362, 5,763, 4,563, and 4,473 kg of DM/cow per lactation) with WC-FH, WC-Con, SC-H, and SC-J×H, respectively, varied considerably. Similarly, milk yield (9,333, 8,443, 6,464, and 6,049 kg/cow per lactation), milk fat content (44.9, 43.3, 42.8, and 49.0 g/kg), and milk protein content (34.6, 34.9, 33.6, and 36.3 g/kg) differed between systems (WC-FH, WC-Con, SC-H, and SC-J×H, respectively). The higher milk yields with the WC systems reflect the greater concentrate inputs with these systems, whereas the greater milk fat and protein content with SC-J×H reflect the use of Jersey crossbred cows. Crossbred cows on SC-J×H produced a similar yield of milk solids as Holstein cows on SC-H. Cows on WC-FH ended the lactation with a greater body weight (BW) and body condition score than cows on any other treatment. While Jersey crossbred cows on SC-J×H had a lower BW than Holstein cows on SC-H, cows on these 2 systems were not different for any of the other BW, body condition score, or blood metabolite parameters examined. Cows on WC-FH had a greater interval from calving to conception, a greater mastitis incidence, and a greater locomotion score than cows on the spring calving systems. Whole-system stocking rates and annual milk outputs were calculated as 2.99, 2.62, 2.48, and 2.50 cows/ha, and 25,706, 20,822, 15,289, and 14,564 kg of milk/ha, with each of WC-FH, WC-Con, SC-H, and SC-J×H, respectively. Gross margin per cow was highest with WC-Con, gross margin per hectare was highest with WC-FH, and gross margin per kilogram of milk was highest with SC-J×H. This study demonstrated that diverse grassland-based milk production systems are associated with very different levels of performance when examined per cow and per hectare.


Subject(s)
Grassland , Lactation , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Female , Lactation/genetics , Milk/metabolism , Silage
6.
BMJ Mil Health ; 168(5): 372-376, 2022 Oct.
Article in English | MEDLINE | ID: mdl-32718977

ABSTRACT

INTRODUCTION: Increasing healthcare sector litigation, accountability and governance has resulted in the identification of human factors (HF) as a common source of error. Both NHS and military doctors must have awareness of HF to enhance safety and productivity. There is limited published evidence examining knowledge of HF in these two healthcare professional groups. METHODS: Doctors of all grades and specialties across the NHS and 3 military groups including the Defence Deanery within the UK were invited to complete a 10-item web-based survey. Questions focused on training undertaken, HF knowledge and potential future training needs. RESULTS: The survey link was emailed to 250 military and 1400 NHS doctors, 191 military and 776 NHS responded (response rate: 76% and 55%, respectively). Military doctors above foundation trainees are more familiar with HF, have had more training and recognise a requirement for additional training. Military foundation trainees had similar responses to their NHS colleagues. Doctors who had not undertaken any HF training are less likely to appreciate its value, with almost 60% of senior NHS doctors reporting no training. Foundation trainees have more training in HF than their senior peers when military seniors are excluded and more frequently identified a need for further training. Junior doctors identified stress, fatigue, communication and leadership more frequently, with seniors identifying work environment and music in theatre correctly more often. CONCLUSION: Non-training grade doctors are less likely to seek HF training. Military doctors are more familiar with HF and have undertaken more training. Given the role of HF in communication, human error, potential litigation, stress, conflict and gross negligence manslaughter convictions, further education is vital.


Subject(s)
Medical Staff, Hospital , Physicians , Humans , Leadership , Medical Staff, Hospital/education , Surveys and Questionnaires
7.
Med Sci Educ ; 32(1): 75-78, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34840857

ABSTRACT

The COVID-19 pandemic has significantly impacted medical education; thus, there is a need to better understand the effectiveness of virtual learning compared to in-person learning. This is a single-center, cross-sectional study of first-year medical students who attended a gastroenterology simulated clinic activity in person in 2018 and 2019 or virtually in 2020. Participants were surveyed on the activity's relevance and effectiveness. Students' assessment of the virtual clinic's effectiveness and relevance was not significantly different from the in-person version of the activity. In addition, most students rated the virtual clinic as effective for learning about telemedicine.

8.
J Dairy Sci ; 104(9): 10059-10075, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34147225

ABSTRACT

After calving, lipid mobilization caused by increased nutrient demands for lactation leads to elevated circulating concentrations of nonesterified fatty acids (NEFA). Excessive NEFA levels have previously been identified as a major risk factor for postpartum immunosuppression. The aim of this study was to investigate changes in global transcriptomic gene expression of peripheral blood mononuclear cells (PBMC) in dairy cows offered different early lactation diets (high concentrate, n = 7; medium, n = 8; or low, n = 9) and with differing circulating levels of NEFA. Cows were classified as having NEFA concentrations of either <500 µM (low, n = 6), 500 to 750 µM (medium, n = 8) or >750 µM (high, n = 10) at 14 d in milk. Plasma urea concentrations were greater for cows on the high concentrate diet but ß-hydroxybutyrate and glucose concentrations did not differ significantly between either dietary treatments or NEFA groups. Cows with high NEFA weighed more at drying off and suffered greater body condition score loss after calving. The PBMC were isolated at 14 d in milk, and RNA was extracted for RNA sequencing. Differential gene expression was analyzed with DESeq2 with q-value for false discovery rate control followed by Gene Ontology Enrichment. Although there were no differentially expressed genes associated with lactation diet, 304 differentially expressed genes were identified between cows with high and low circulating NEFA, with 118 upregulated and 186 downregulated. Gene Ontology enrichment analysis demonstrated that biological adhesion and immune system process were foremost among various PBMC functions which were altered relating to body defenses and immunity. High NEFA concentrations were associated with inhibited cellular adhesion function by downregulating 20 out of 26 genes (by up to 17-fold) related to this process. Medium NEFA concentrations altered a similar set of functions as high NEFA, but with smaller enrichment scores. Localization and immune system process were most significant, with biological adhesion ranking only eleventh. Our results demonstrated that increased circulating NEFA concentrations, but not diet, were associated with immune system processes in PBMC in early lactation cows. Leukocyte cell-to-cell adhesion was inhibited when the NEFA concentration exceeded 750 µM, which would reduce the efficiency of diapedesis and so contribute to decreased body defense mechanisms and predispose animals to infection.


Subject(s)
Fatty Acids, Nonesterified , Leukocytes, Mononuclear , 3-Hydroxybutyric Acid , Animals , Cattle , Diet/veterinary , Female , Lactation , Milk , Postpartum Period , Transcriptome
10.
J Dairy Sci ; 104(6): 7233-7251, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33685685

ABSTRACT

This study was designed to contribute to the understanding of the relationships between energy balance (EB) in early lactation [4 to 21 d in milk (DIM)] and fertility traits [interval to start of luteal activity (SLA), interval to first observed heat (FOH), and conception to first artificial insemination (AI)], and their associated relationships with cow performance and blood metabolites between 4 to 150 DIM. Individual cow data (488 primiparous and 1,020 multiparous lactations) from 27 experiments was analyzed. Data on cow performance, EB (on a metabolizable energy basis), and fertility traits were available for all cows, whereas milk progesterone data (to determine SLA) and periodic blood metabolite data were available for 1,042 and 1,055 lactations, respectively. Data from primiparous and multiparous cows were analyzed separately, with the data sets for the 2 parity groups divided into quartiles (Q1-Q4) according to the average EB during 4 to 21 DIM (EB range for Q1 to Q4: primiparous, -120 to -49, -49 to -24, -24 to -3, and -3 to 92 MJ/d, respectively: multiparous, -191 to -79, -79 to -48, -48 to -22, and -22 to 93 MJ/d, respectively). Differences between EB quartiles for production and fertility traits were compared. In early lactation (4 to 21 DIM), moving from Q1 to Q4 mean DMI and metabolizable energy intake increased whereas mean ECM decreased. During the same period, moving from Q1 to Q4 milk fat content, milk fat-to-protein ratio, and plasma nonesterified fatty acid and ß-hydroxybutyrate concentrations decreased, whereas milk protein content and plasma glucose concentrations increased in both primiparous and multiparous cows. When examined over the entire experimental period (4 to 150 DIM), many of the trends in intakes and milk production remained, although the magnitude of the difference between quartiles was much reduced, whereas milk fat content did not differ between quartiles in primiparous cows. The percentage of cows with FOH before 42 DIM increased from Q1 to Q4 (from 46 to 72% in primiparous cows, and from 41 to 58% in multiparous cows). Interval from calving to SLA and to FOH decreased with increasing EB during 4 to 21 DIM, with these occurring 9.8 and 10.2 d earlier, respectively, in Q4 compared with Q1 (primiparous cows), and 7.4 and 5.9 d earlier, respectively, in Q4 compared with Q1 (multiparous cows). For each 10 MJ/d decrease in mean EB during 4 to 21 DIM, FOH was delayed by 1.2 and 0.8 d in primiparous and multiparous cows, respectively. However, neither days to first AI nor the percentage of cows that conceived to first AI were affected by daily EB during 4 to 21 DIM in either primiparous or multiparous cows, and this is likely to reflect a return to a less metabolically stressed status at the time of AI. These results demonstrate that interval from calving to SLA and to FOH were reduced with increasing EB in early lactation, whereas early lactation EB had no effect on conception to the first service.


Subject(s)
Diet , Lactation , Animals , Cattle , Energy Metabolism , Female , Fertility , Milk , Parity , Pregnancy
11.
J Dairy Sci ; 104(3): 3596-3616, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33455774

ABSTRACT

Homeorhetic mechanisms assist dairy cows in the transition from pregnancy to lactation. Less successful cows develop severe negative energy balance (NEB), placing them at risk of metabolic and infectious diseases and reduced fertility. We have previously placed multiparous Holstein Friesian cows from 4 herds into metabolic clusters, using as biomarkers measurements of plasma nonesterified fatty acids, ß-hydroxybutyrate, glucose and IGF-1 collected at 14 and 35 d in milk (DIM). This study characterized the global transcriptomic profiles of liver and circulating leukocytes from the same animals to determine underlying mechanisms associated with their metabolic and immune function. Liver biopsy and whole-blood samples were collected around 14 DIM for RNA sequencing. All cows with available RNA sequencing data were placed into balanced (BAL, n = 44), intermediate (n = 44), or imbalanced (IMBAL, n = 19) metabolic cluster groups. Differential gene expression was compared between the 3 groups using ANOVA, but only the comparison between BAL and IMBAL cows is reported. Pathway analysis was undertaken using DAVID Bioinformatic Resources (https://david.ncifcrf.gov/). Milk yields did not differ between BAL and IMBAL cows but dry matter intake was less in IMBAL cows and they were in greater energy deficit at 14 DIM (-4.48 v -11.70 MJ/d for BAL and IMBAL cows). Significantly differentially expressed pathways in hepatic tissue included AMPK signaling, glucagon signaling, adipocytokine signaling, and insulin resistance. Genes involved in lipid metabolism and cholesterol transport were more highly expressed in IMBAL cows but IGF1 and IGFALS were downregulated. Leukocytes from BAL cows had greater expression of histones and genes involved in nucleosomes and cell division. Leukocyte expression of heat shock proteins increased in IMBAL cows, suggesting an unfolded protein response, and several key genes involved in immune responses to pathogens were upregulated (e.g., DEFB13, HP, OAS1Z, PTX3, and TLR4). Differentially expressed genes upregulated in IMBAL cows in both tissues included CD36, CPT1, KFL11, and PDK4, all central regulators of energy metabolism. The IMBAL cows therefore had greater difficulty maintaining glucose homeostasis and had dysregulated hepatic lipid metabolism. Their energy deficit was associated with a reduced capacity for cell division and greater evidence of stress responses in the leukocyte population, likely contributing to an increased risk of infectious disease.


Subject(s)
Lactation , Metabolome , 3-Hydroxybutyric Acid/metabolism , Animals , Cattle , Diet , Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Female , Gene Expression , Leukocytes , Liver/metabolism , Milk/chemistry , Pregnancy
12.
Radiography (Lond) ; 27(3): 817-822, 2021 08.
Article in English | MEDLINE | ID: mdl-33468409

ABSTRACT

INTRODUCTION: The success of the child protection process is dependent on rapid actions by healthcare professionals who encounter a child in possible need of protection and make appropriate referrals to statutory agencies. Clear rules that promote inter-professional working among health professionals is necessary to enhance child protection. AIM: To explore the internal factors leading to bystander attitude towards reporting of suspected physical abuse amongst Ghanaian radiographers. METHODS: Twenty radiographers across Ghana who have encountered suspected child physical abuse during practice interviewed. Data was collected using qualitative methodology using semi-structured interviews. Participants were radiographers who were selected using purposive sampling. Data was thematically analysed and managed with NVivo version 10. Themes developed formed the basis of the discussion. RESULTS: Participants reported barriers such as training deficits, lack of knowledge in reporting regulations, and the absence of a framework or structures in place to guide suspected physical abuse (SPA) management. The results showed that the majority of participants were ignorant of the role of the social worker in identified cases of SPA. Additionally, there was no teamwork in the majority of the hospitals in the management of suspected physical abuse. CONCLUSIONS: Participants' behaviour towards child protection was congruent with the situation where an individual would assess the consequences of an action. Fear, lack of direction and collaboration characterised the management of suspected physical abuse. IMPLICATION FOR PRACTICE: The timely identification of child abuse is key to providing the necessary intervention for the child. However, the mere identification of abuse would be of no use to the child when no action was taken by radiographers handling the case as a result of impediments on their way.


Subject(s)
Child Abuse , Physical Abuse , Allied Health Personnel , Child , Child Abuse/diagnosis , Ghana , Health Personnel , Humans
13.
J Dairy Sci ; 103(5): 4435-4445, 2020 May.
Article in English | MEDLINE | ID: mdl-32147266

ABSTRACT

Improving nitrogen use efficiency (NUE) at both the individual cow and the herd level has become a key target in dairy production systems, for both environmental and economic reasons. Cost-effective and large-scale phenotyping methods are required to improve NUE through genetic selection and by feeding and management strategies. The aim of this study was to evaluate the possibility of using mid-infrared (MIR) spectra of milk to predict individual dairy cow NUE during early lactation. Data were collected from 129 Holstein cows, from calving until 50 d in milk, in 3 research herds (Denmark, Ireland, and the UK). In 2 of the herds, diets were designed to challenge cows metabolically, whereas a diet reflecting local management practices was offered in the third herd. Nitrogen intake (kg/d) and nitrogen excreted in milk (kg/d) were calculated daily. Nitrogen use efficiency was calculated as the ratio between nitrogen in milk and nitrogen intake, and expressed as a percentage. Individual daily values for NUE ranged from 9.7 to 81.7%, with an average of 36.9% and standard deviation of 10.4%. Milk MIR spectra were recorded twice weekly and were standardized into a common format to avoid bias between apparatus or sampling periods. Regression models predicting NUE using milk MIR spectra were developed on 1,034 observations using partial least squares or support vector machines regression methods. The models were then evaluated through (1) a cross-validation using 10 subsets, (2) a cow validation excluding 25% of the cows to be used as a validation set, and (3) a diet validation excluding each of the diets one by one to be used as validation sets. The best statistical performances were obtained when using the support vector machines method. Inclusion of milk yield and lactation number as predictors, in combination with the spectra, also improved the calibration. In cross-validation, the best model predicted NUE with a coefficient of determination of cross-validation of 0.74 and a relative error of 14%, which is suitable to discriminate between low- and high-NUE cows. When performing the cow validation, the relative error remained at 14%, and during the diet validation the relative error ranged from 12 to 34%. In the diet validation, the models showed a lack of robustness, demonstrating difficulties in predicting NUE for diets and for samples that were not represented in the calibration data set. Hence, a need exists to integrate more data in the models to cover a maximum of variability regarding breeds, diets, lactation stages, management practices, seasons, MIR instruments, and geographic regions. Although the model needs to be validated and improved for use in routine conditions, these preliminary results showed that it was possible to obtain information on NUE through milk MIR spectra. This could potentially allow large-scale predictions to aid both further genetic and genomic studies, and the development of farm management tools.


Subject(s)
Cattle/physiology , Lactation , Milk/chemistry , Nitrogen/metabolism , Spectroscopy, Fourier Transform Infrared/veterinary , Animals , Female
14.
Animal ; 14(5): 1067-1075, 2020 May.
Article in English | MEDLINE | ID: mdl-31694730

ABSTRACT

Both blood- and milk-based biomarkers have been analysed for decades in research settings, although often only in one herd, and without focus on the variation in the biomarkers that are specifically related to herd or diet. Biomarkers can be used to detect physiological imbalance and disease risk and may have a role in precision livestock farming (PLF). For use in PLF, it is important to quantify normal variation in specific biomarkers and the source of this variation. The objective of this study was to estimate the between- and within-herd variation in a number of blood metabolites (ß-hydroxybutyrate (BHB), non-esterified fatty acids, glucose and serum IGF-1), milk metabolites (free glucose, glucose-6-phosphate, urea, isocitrate, BHB and uric acid), milk enzymes (lactate dehydrogenase and N-acetyl-ß-D-glucosaminidase (NAGase)) and composite indicators for metabolic imbalances (Physiological Imbalance-index and energy balance), to help facilitate their adoption within PLF. Blood and milk were sampled from 234 Holstein dairy cows from 6 experimental herds, each in a different European country, and offered a total of 10 different diets. Blood was sampled on 2 occasions at approximately 14 days-in-milk (DIM) and 35 DIM. Milk samples were collected twice weekly (in total 2750 samples) from DIM 1 to 50. Multilevel random regression models were used to estimate the variance components and to calculate the intraclass correlations (ICCs). The ICCs for the milk metabolites, when adjusted for parity and DIM at sampling, demonstrated that between 12% (glucose-6-phosphate) and 46% (urea) of the variation in the metabolites' levels could be associated with the herd-diet combination. Intraclass Correlations related to the herd-diet combination were generally higher for blood metabolites, from 17% (cholesterol) to approximately 46% (BHB and urea). The high ICCs for urea suggest that this biomarker can be used for monitoring on herd level. The low variance within cow for NAGase indicates that few samples would be needed to describe the status and potentially a general reference value could be used. The low ICC for most of the biomarkers and larger within cow variation emphasises that multiple samples would be needed - most likely on the individual cows - for making the biomarkers useful for monitoring. The majority of biomarkers were influenced by parity and DIM which indicate that these should be accounted for if the biomarker should be used for monitoring.


Subject(s)
Cattle , Lactation/physiology , Milk/metabolism , 3-Hydroxybutyric Acid/blood , Animals , Biomarkers/analysis , Biomarkers/blood , Biomarkers/metabolism , Cholesterol/metabolism , Diet/veterinary , Energy Metabolism , Fatty Acids, Nonesterified/blood , Female , Glucose/metabolism , Insulin-Like Growth Factor I/metabolism , Lactation/blood , Pregnancy
15.
Sci Rep ; 9(1): 16479, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712649

ABSTRACT

A two-year old rat, R222, survived a life-time of extreme hydrocephaly affecting the size and organization of its brain. Much of the cortex was severely thinned and replaced by cerebrospinal fluid, yet R222 had normal motor function, could hear, see, smell, and respond to tactile stimulation. The hippocampus was malformed and compressed into the lower hindbrain together with the hypothalamus midbrain and pons, yet R222 showed normal spatial memory as compared to age-matched controls. BOLD MRI was used to study the reorganization of R222's brain function showing global activation to visual, olfactory and tactile stimulation, particularly in the brainstem/cerebellum. The results are discussed in the context of neuroadaptation in the face of severe hydrocephaly and subsequent tissue loss, with an emphasis on what is the "bare minimum" for survival.


Subject(s)
Behavior, Animal , Brain/diagnostic imaging , Brain/physiology , Functional Neuroimaging , Neuronal Plasticity , Animals , Brain/physiopathology , Brain Mapping , Connectome , Disease Models, Animal , Female , Functional Neuroimaging/methods , Hydrocephalus/diagnosis , Hydrocephalus/etiology , Hydrocephalus/physiopathology , Magnetic Resonance Imaging , Male , Mice, Knockout , Rats
16.
J Dairy Sci ; 102(12): 10887-10902, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31548054

ABSTRACT

The European livestock sector has a significant deficit of high-quality protein feed ingredients. Consequently there is interest in using locally grown protein grain crops to partially or completely replace imported protein feeds in dairy cow rations. Field bean (FB; Vicia faba) has been identified as a locally grown crop with significant potential. The current study was designed to examine the effects of FB on cow performance and nutrient utilization in the diet of early-lactation dairy cows, including high levels of FB (up to 8.4 kg/cow per day). The experiment used 72 dairy cows in a 3-treatment continuous design (from calving until wk 20 of lactation). All cows were given ad libitum access to a mixed ration comprising grass silage and concentrates [45:55 on a dry matter (DM) basis]. Concentrates offered contained either 0, 349, or 698 g of FB/kg of concentrate (treatments FB0, FB-Low, and FB-High, respectively), with FB completely replacing soybean meal, rapeseed meal, maize gluten, and wheat in the concentrate for the FB-High treatment. Following completion of the 20-wk experiment, ration digestibility, nutrient utilization, and methane (CH4) production were measured using 4 cows from each treatment. Neither silage DM intake, total DM intake, nor milk yield were affected by treatment. Cows on FB0 had a higher milk fat content than those on FB-High, and cows on FB0 and FB-Low had higher milk protein contents than did those on FB-High. Field bean inclusion increased the degree of saturation of milk fat produced. Milk fat yield, milk protein yield, and milk fat plus protein yield were higher with FB0 than with either FB-Low or FB-High. Treatment had no effect on the digestibility of DM, organic matter, nitrogen (N), gross energy, or neutral detergent fiber, whereas digestibility of acid detergent fiber was higher with FB0 than with FB-High. Neither the efficiency of gross energy or N utilization, nor any of the CH4 production parameters examined, were affected by treatment. Similarly, none of the fertility or health parameters examined were affected by treatment. The reduction in milk fat observed may have been due to the higher starch content of the FB-High diet, and the reduction in milk protein may have been due to a deficit of methionine in the diet. It is likely that these issues could be overcome by changes in ration formulation, thus allowing FB to be included at the higher range without loss in performance.


Subject(s)
Animal Feed , Cattle , Vicia faba , Animals , Brassica rapa , Diet/veterinary , Digestion , Female , Lactation , Methane/biosynthesis , Milk/chemistry , Milk Proteins , Poaceae , Silage/analysis , Glycine max , Zea mays
17.
Sci Adv ; 5(5): eaav2244, 2019 05.
Article in English | MEDLINE | ID: mdl-31049395

ABSTRACT

Oxytocin is used in approximately half of all births in the United States during labor induction and/or augmentation. However, the effects of maternal oxytocin administration on offspring development have not been fully characterized. Here, we used the socially monogamous prairie vole to examine the hypothesis that oxytocin exposure at birth can have long-term developmental consequences. Maternally administered oxytocin increased methylation of the oxytocin receptor (Oxtr) in the fetal brain. As adults, oxytocin-exposed voles were more gregarious, with increased alloparental caregiving toward pups and increased close social contact with other adults. Cross-fostering indicated that these effects were the result of direct action on the offspring, rather than indirect effects via postnatal changes in maternal behavior. Male oxytocin-exposed offspring had increased oxytocin receptor density and expression in the brain as adults. These results show that long-term effects of perinatal oxytocin may be mediated by an epigenetic mechanism.


Subject(s)
Arvicolinae/physiology , Behavior, Animal/drug effects , Epigenesis, Genetic/drug effects , Oxytocics/pharmacology , Oxytocin/pharmacology , Parturition/drug effects , Animals , Animals, Newborn , Brain/drug effects , Brain/metabolism , Female , Male , Methylation/drug effects , Oxytocics/administration & dosage , Oxytocin/administration & dosage , Pregnancy , Receptors, Oxytocin/metabolism , Social Behavior
18.
Radiography (Lond) ; 25(1): 51-57, 2019 02.
Article in English | MEDLINE | ID: mdl-30599831

ABSTRACT

INTRODUCTION: Radiographers are well placed to flag non accidental injury in children due to their unique position within the imaging chain. Being able to identify (or suspect) physical abuse in children and reporting the incident are, however, two different issues. This study was conducted to explore the external influences in the decision making of the Ghanaian radiographer to report suspected child physical abuse (CPA). METHOD: This was a qualitative study which applied interpretive phenomenology. Semi-structured interviews were conducted with 20 radiographers who were selected from various hospitals throughout the ten regions of Ghana using purposive sampling. Data was thematically analysed and managed with NVivo Version 10. Themes developed formed the basis of this discussion. RESULTS: Several socio-cultural beliefs and behaviours impacted on the Ghanaian radiographers' decisions to report suspected child physical abuse. The findings of this study indicated that cultural solidarity, superstition and police frustrations were among other factors that characterised the Ghanaian radiographer's inability to report child physical abuse when it occurred. CONCLUSION: Radiographers reported fear of both physical and spiritual attack when child physical abuse was reported. This paper argues that, to achieve the fight against child physical abuse in some African countries such as Ghana, radiographers would have to be educated and counselled against belief in superstition and adherence to some cultural values which affect child protection.


Subject(s)
Attitude of Health Personnel , Battered Child Syndrome/diagnostic imaging , Child Abuse , Culture , Radiography , Adult , Allied Health Personnel , Child , Female , Ghana , Humans , Male , Middle Aged
19.
Animal ; 13(3): 649-658, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29987991

ABSTRACT

Unbalanced metabolic status in the weeks after calving predisposes dairy cows to metabolic and infectious diseases. Blood glucose, IGF-I, non-esterified fatty acids (NEFA) and ß-hydroxybutyrate (BHB) are used as indicators of the metabolic status of cows. This work aims to (1) evaluate the potential of milk mid-IR spectra to predict these blood components individually and (2) to evaluate the possibility of predicting the metabolic status of cows based on the clustering of these blood components. Blood samples were collected from 241 Holstein cows on six experimental farms, at days 14 and 35 after calving. Blood samples were analyzed by reference analysis and metabolic status was defined by k-means clustering (k=3) based on the four blood components. Milk mid-IR analyses were undertaken on different instruments and the spectra were harmonized into a common standardized format. Quantitative models predicting blood components were developed using partial least squares regression and discriminant models aiming to differentiate the metabolic status were developed with partial least squares discriminant analysis. Cross-validations were performed for both quantitative and discriminant models using four subsets randomly constituted. Blood glucose, IGF-I, NEFA and BHB were predicted with respective R 2 of calibration of 0.55, 0.69, 0.49 and 0.77, and R 2 of cross-validation of 0.44, 0.61, 0.39 and 0.70. Although these models were not able to provide precise quantitative values, they allow for screening of individual milk samples for high or low values. The clustering methodology led to the sharing out of the data set into three groups of cows representing healthy, moderately impacted and imbalanced metabolic status. The discriminant models allow to fairly classify the three groups, with a global percentage of correct classification up to 74%. When discriminating the cows with imbalanced metabolic status from cows with healthy and moderately impacted metabolic status, the models were able to distinguish imbalanced group with a global percentage of correct classification up to 92%. The performances were satisfactory considering the variables are not present in milk, and consequently predicted indirectly. This work showed the potential of milk mid-IR analysis to provide new metabolic status indicators based on individual blood components or a combination of these variables into a global status. Models have been developed within a standardized spectral format, and although robustness should preferably be improved with additional data integrating different geographic regions, diets and breeds, they constitute rapid, cost-effective and large-scale tools for management and breeding of dairy cows.


Subject(s)
Animal Husbandry/methods , Blood Glucose/metabolism , Energy Metabolism , Fatty Acids, Nonesterified/blood , Insulin-Like Growth Factor I/metabolism , Spectroscopy, Fourier Transform Infrared/veterinary , Animals , Blood Chemical Analysis/veterinary , Cattle , Cluster Analysis , Female , Milk , Spectroscopy, Fourier Transform Infrared/methods
20.
Animal ; 13(4): 799-809, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30066667

ABSTRACT

Concentrate inclusion levels in dairy cow diets are often adjusted so that the milk yield responses remain economic. While changes in concentrate level on performance is well known, their impact on other biological parameters, including immune function, is less well understood. The objective of this study was to evaluate the effect of concentrate inclusion level in a grass silage-based mixed ration on immune function. Following calving 63 (45 multiparous and 18 primiparous) Holstein Friesian dairy cows were allocated to one of three isonitrogenous diets for the first 70 days of lactation. Diets comprised of a mixture of concentrates and grass silage, with concentrates comprising either a low (30%, LC), medium (50%, MC) or high (70%, HC) proportion of the diet on a dry matter (DM) basis. Daily DM intakes, milk yields and BW were recorded, along with weekly body condition score, milk composition and vaginal mucus scores. Blood biochemistry was measured using a chemistry analyzer, neutrophil phagocytic and oxidative burst assessed using commercial kits and flow cytometry, and interferon-γ production evaluated by ELISA after whole blood stimulation. Over the study period cows on HC had a higher total DM intake, milk yield, fat yield, protein yield, fat+protein yield, protein content, mean BW and mean daily energy balance, and a lower BW loss than cows on MC, whose respective values were higher than cows on LC. Cows on HC and MC had a lower serum non-esterified fatty acid concentration than cows on LC (0.37, 0.37 and 0.50 mmol/l, respectively, P=0.005, SED=0.032), while cows on HC had a lower serum ß-hydroxybutyrate concentration than cows on MC and LC (0.42, 0.55 and 0.55 mmol/l, respectively, P=0.002, SED=0.03). Concentrate inclusion level had no effect on vaginal mucus scores. At week 3 postpartum, cows on HC tended to have a higher percentage of oxidative burst positive neutrophils than cows on LC (43.2% and 35.3%, respectively, P=0.078, SED=3.11), although at all other times concentrate inclusion level in the total mixed ration had no effect on neutrophil phagocytic or oxidative burst characteristics, or on interferon-γ production by pokeweed mitogen stimulated whole blood culture. This study demonstrates that for high yielding Holstein Friesian cows managed on a grass silage-based diet, concentrate inclusion levels in early lactation affects performance but has no effect on neutrophil or lymphocyte immune parameters.


Subject(s)
Cattle/physiology , Lactation/physiology , Poaceae , Silage/analysis , 3-Hydroxybutyric Acid , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Energy Metabolism , Fatty Acids, Nonesterified , Female , Milk , Postpartum Period , Pregnancy , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...