Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1389358, 2024.
Article in English | MEDLINE | ID: mdl-38736873

ABSTRACT

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Genotype , Killer Cells, Natural , Receptors, KIR , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Male , Adult , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus/immunology , Receptors, KIR/genetics , Middle Aged , Sex Factors , Age Factors , CD57 Antigens , Histocompatibility Testing , Young Adult , NK Cell Lectin-Like Receptor Subfamily C/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Aged , Receptors, KIR3DL1/genetics
2.
Cancers (Basel) ; 15(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37345091

ABSTRACT

KIR3DL1 alleles are expressed at different levels on the natural killer (NK) cell surface. In particular, the non-expressed KIR3DL1*004 allele appears to be common in Caucasian populations. However, the overall distribution of non-expressed KIR3DL1 alleles and their clinical relevance after T-replete haploidentical hematopoietic stem cell transplantation (hHSCT) with post-transplant cyclophosphamide remain poorly documented in European populations. In a cohort of French blood donors (N = 278), we compared the distribution of expressed and non-expressed KIR3DL1 alleles using next-generation sequencing (NGS) technology combined with multi-color flow cytometry. We confirmed the predominance of the non-expressed KIR3DL1*004 allele. Using allele-specific constructs, the phenotype and function of the uncommon KIR3DL1*019 allotype were characterized using the Jurkat T cell line and NKL transfectants. Although poorly expressed on the NK cell surface, KIR3DL1*019 is retained within NK cells, where it induces missing self-recognition of the Bw4 epitope. Transposing our in vitro observations to a cohort of hHSCT patients (N = 186) led us to observe that non-expressed KIR3DL1 HSC grafts increased the incidence of relapse in patients with myeloid diseases. Non-expressed KIR3DL1 alleles could, therefore, influence the outcome of hHSCT.

SELECTION OF CITATIONS
SEARCH DETAIL
...