Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 136: 106528, 2023 07.
Article in English | MEDLINE | ID: mdl-37054528

ABSTRACT

Intense synthetic efforts have been directed towards the development of noncalcemic analogs of 1,25-dihydroxyvitamin D3. We describe here the structural analysis and biological evaluation of two derivatives of 1,25-dihydroxyvitamin D3 with modifications limited to the replacement of the 25-hydroxyl group by a 25-amino or 25-nitro groups. Both compounds are agonists of the vitamin D receptor. They mediate biological effects similar to 1,25-dihydroxyvitamin D3, the 25-amino derivative being the most potent one while being less calcemic than 1,25-dihydroxyvitamin D3. The in vivo properties of the compounds make them of potential therapeutic value.


Subject(s)
Receptors, Calcitriol , Vitamin D , Vitamin D/pharmacology , Calcitriol/chemistry , Calcitriol/pharmacology
2.
Med Chem ; 17(3): 230-246, 2021.
Article in English | MEDLINE | ID: mdl-32819231

ABSTRACT

BACKGROUND: 1α,25-dihydroxy vitamin D3 (calcitriol) shows potent growth-inhibitory properties on different cancer cell lines, but its hypercalcemic effects have severely hampered its therapeutic application. Therefore, it is important to develop synthetic calcitriol analogues that retain or even increase its antitumoral effects and lack hypercalcemic activity. Based on previous evidence of the potent antitumor effects of the synthetic alkynylphosphonate EM1 analogue, we have now synthesized a derivative called SG. OBJECTIVE: The aim of the present work is to evaluate the calcemic activity and the antitumor effect of SG, comparing these effects with those exerted by calcitriol and with those previously published for EM1. In addition, we propose to analyze by in silico studies, the chemical structure-biological function relationship of these molecules. METHODS: We performed the synthesis of vinylphosphonate SG analogue; in vitro assays on different cancer cell lines; in vivo assays on mice; and in silico assays applying computational molecular modeling. RESULTS: The SG compound lacks hypercalcemic activity, similar to the parent compound EM1. However, the antitumor activity was blunted, as no antiproliferative or anti-migratory effects were observed. By in silico assays, we demonstrated that SG analogue has a lower affinity for the VDRligand- binding domain than the EM1 compound due to lack of interaction with the important residues His305 and His397. CONCLUSION: These results demonstrate that the chemical modification in the lateral side chain of the SG analogue affects the antitumoral activity observed previously for EM1 but does not affect the calcemic activity. These results contribute to the rational design and synthesis of novel calcitriol analogues.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Calcitriol/chemistry , Calcitriol/pharmacology , Organophosphonates/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Design , Humans , Structure-Activity Relationship
3.
J Steroid Biochem Mol Biol ; 200: 105649, 2020 06.
Article in English | MEDLINE | ID: mdl-32142933

ABSTRACT

The vitamin D receptor (VDR) constitutes a promising therapeutic target for the treatment of cancer. Unfortunately, its natural agonist calcitriol does not have clinical utility due to its potential to induce hypercalcemic effects at the concentrations required to display antitumoral activity. For this reason, the search for new calcitriol analogues with adequate therapeutic profiles has been actively pursued by the scientific community. We have previously reported the obtaining and the biological activity evaluation of new calcitriol analogues by modification of its sidechain, which exhibited relevant antiproliferative and selectivity profiles against tumoral and normal cells. In this work we conducted molecular modeling studies (i.e. molecular docking, molecular dynamics, constant pH molecular dynamics (CpHMD) and free energy of binding analysis) to elucidate at an atomistic level the molecular basis related to the potential of the new calcitriol analogues to achieve selectivity between tumoral and normal cells. Two histidine residues (His305 and His397) were found to exhibit a particular tautomeric configuration that produces the observed bioactivity. Also, different acid-based properties were observed for His305 and His307 with His305 showing an increased acidity (pKa 5.2) compared to His397 (pKa 6.8) and to the typical histidine residue. This behavior favored the pharmacodynamic interaction of the calcitriol analogues exhibiting selectivity for tumoral cells when VDR was modeled at the more acidic tumoral environment (pH ≅ 6) compared to the case when VDR was modeled at pH 7.4 (normal cell environment). On the other hand, non-selective compounds, including calcitriol, exhibited a similar interaction pattern with VDR when the receptor was modeled at both pH conditions. The results presented constitute the first evidence on the properties of the VDR receptor in different physicochemical environments and thus represent a significant contribution to the in silico screening and design of new calcitriol analogues.


Subject(s)
Models, Molecular , Receptors, Calcitriol/metabolism , Calcitriol/metabolism , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Ligands , Receptors, Calcitriol/chemistry , Tumor Microenvironment
4.
Arch Pharm (Weinheim) ; 352(5): e1800315, 2019 May.
Article in English | MEDLINE | ID: mdl-31025400

ABSTRACT

The active form of vitamin D3 , calcitriol, is a potent antiproliferative compound. However, when effective antitumor doses of calcitriol are used, hypercalcemic effects are observed, thus blocking its therapeutic application. To overcome this problem, structural analogues have been designed with the aim of retaining or even increasing the antitumor effects while decreasing its calcemic activity. This report aims at gaining insights into the structure-activity relationships of the novel oxolane-containing analogue, AM-27, recently synthesized. We herein demonstrate that this compound has antiproliferative and antimigratory effects in squamous cell carcinoma, glioblastoma, and breast cancer cell lines. Analyses of the mechanisms underlying the AM-27 effects on cell viability revealed induction of apoptosis by the analogue. Importantly, nonmalignant cell lines were little or not affected by the compound. In addition, the analogue did not produce hypercalcemia in mice. Also, in silico studies involving docking and molecular dynamics techniques showed that AM-27 is able to bind to the human vitamin D receptor with a higher affinity than the natural ligand calcitriol, a feature that is mostly derived from an electrostatic interaction pattern. Altogether, the proapoptotic effect observed in cancer cells, the lack of calcemic activity in mice, and the differential effects in normal cells suggest the potential of AM-27 as a therapeutic compound for cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Calcitriol/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calcitriol/chemical synthesis , Calcitriol/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer Simulation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
5.
J Steroid Biochem Mol Biol ; 154: 285-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26365558

ABSTRACT

The active form of vitamin D3, calcitriol, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and prodifferentiating agent. However, when effective antitumor doses of calcitriol are employed, hypercalcemic effects are observed, thus precluding its therapeutic application. To overcome this problem, structural analogues have been designed with the aim at retaining or even increasing the antitumor effects while decreasing its calcemic activity. This report shows the biological evaluation of an alkynylphosphonate vitamin D less-calcemic analogue in a murine model of breast cancer. We demonstrate that this compound has potent anti-metastatic effects through its action over cellular migration and invasion likely mediated through the up-regulation of E-cadherin expression. Based on the current in vitro and in vivo results, EM1 is a promising candidate as a therapeutic agent in breast cancer.


Subject(s)
Breast Neoplasms/pathology , Calcitriol/pharmacology , Neoplasm Metastasis/prevention & control , Organophosphonates/pharmacology , Animals , Calcitriol/analogs & derivatives , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C
6.
Exp Mol Pathol ; 97(3): 411-24, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25240203

ABSTRACT

There is evidence that p300, a transcriptional co-factor and a lysine acetyl-transferase, could play a role both as an oncoprotein and as a tumor suppressor, although little is known regarding its role in breast cancer (BC). First we investigated the role p300 has on BC by performing pharmacological inhibition of p300 acetyl-transferase function and analyzing the effects on cell count, migration and invasion in LM3 murine breast cancer cell line and on tumor progression in a syngeneic murine model. We subsequently studied p300 protein expression in human BC biopsies and evaluated its correlation with clinical and histopathological parameters of the patients. We observed that inhibition of p300 induced apoptosis and reduced migration and invasion in cultured LM3 cells. Furthermore, a significant reduction in tumor burden, number of lung metastases and number of tumors invading the abdominal cavity was observed in a syngeneic tumor model of LM3 following treatment with the p300 inhibitor. This reduction in tumor burden was accompanied by a decrease in the mitotic index and Ki-67 levels and an increase in Bax expression. Moreover, the analysis of p300 expression in human BC samples showed that p300 immunoreactivity is significantly higher in the cancerous tissues than in the non-malignant mammary tissues and in the histologically normal adjacent tissues. Interestingly, p300 was observed in the cytoplasm, and the rate of cytoplasmic p300 was higher in BC than in non-tumor tissues. Importantly, we found that cytoplasmic localization of p300 is associated with a longer overall survival time of the patients. In conclusion, we demonstrated that inhibition of the acetylase function of p300 reduces both cell count and invasion in LM3 cells, and decreases tumor progression in the animal model. In addition, we show that the presence of p300 in the cytoplasm correlates with increased survival of patients suggesting that its nuclear localization is necessary for the pro-tumoral effects.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , E1A-Associated p300 Protein/metabolism , Animals , Apoptosis/physiology , Blotting, Western , Breast Neoplasms/mortality , Cell Line, Tumor , Cell Movement , Cell Proliferation/physiology , Cytoplasm/chemistry , Cytoplasm/metabolism , Disease Models, Animal , Female , Fluorescent Antibody Technique , Humans , Kaplan-Meier Estimate , Mice , Mice, Inbred BALB C , Microscopy, Confocal
7.
J Neurooncol ; 118(1): 49-60, 2014 May.
Article in English | MEDLINE | ID: mdl-24584679

ABSTRACT

Vitamin D and its analogs have been shown to display anti-proliferative effects in a wide variety of cancer types including glioblastoma multiforme (GBM). These anticancer effects are mediated by its active metabolite, 1α, 25-dihydroxyvitamin D3 (calcitriol) acting mainly through vitamin D receptor (VDR) signaling. In addition to its involvement in calcitriol action, VDR has also been demonstrated to be useful as a prognostic factor for some types of cancer. However, to our knowledge, there are no studies evaluating the expression of VDR protein and its association with outcome in gliomas. Therefore, we investigated VDR expression by using immunohistochemical analysis in human glioma tissue microarrays, and analyzed the association between VDR expression and clinico-pathological parameters. We further investigated the effects of genetic and pharmacologic modulation of VDR on survival and migration of glioma cell lines. Our data demonstrate that VDR is increased in tumor tissues when compared with VDR in non-malignant brains, and that VDR expression is associated with an improved outcome in patients with GBM. We also show that both genetic and pharmacologic modulation of VDR modulates GBM cellular migration and survival and that VDR is necessary for calcitriol-mediated effects on migration. Altogether these results provide some limited evidence supporting a role for VDR in glioma progression.


Subject(s)
Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/metabolism , Receptors, Calcitriol/metabolism , Adult , Age Factors , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Calcitriol/pharmacology , Calcium Channel Agonists/pharmacology , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/physiology , Cyclin D1/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Middle Aged , Oncogene Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sex Factors , Time Factors , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...