Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 241: 112155, 2023 04.
Article in English | MEDLINE | ID: mdl-36739731

ABSTRACT

A copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide in the denitrifier Sinorhizobium meliloti 2011 (SmNirK), a microorganism used as bioinoculant in alfalfa seeds. Wild type SmNirK is a homotrimer that contains two copper centers per monomer, one of type 1 (T1) and other of type 2 (T2). T2 is at the interface of two monomers in a distorted square pyramidal coordination bonded to a water molecule and three histidine side chains, H171 and H136 from one monomer and H342 from the other. We report the molecular, catalytic, and spectroscopic properties of the SmNirK variant H342G, in which the interfacial H342 T2 ligand is substituted for glycine. The molecular properties of H342G are similar to those of wild type SmNirK. Fluorescence-based thermal shift assays and FTIR studies showed that the structural effect of the mutation is only marginal. However, the kinetic reaction with the physiological electron donor was significantly affected, which showed a âˆ¼ 100-fold lower turnover number compared to the wild type enzyme. UV-Vis, EPR and FTIR studies complemented with computational calculations indicated that the drop in enzyme activity are mainly due to the void generated in the protein substrate channel by the point mutation. The main structural changes involve the filling of the void with water molecules, the direct coordination to T2 copper ion of the second sphere aspartic acid ligand, a key residue in catalysis and nitrite sensing in NirK, and to the loss of the 3 N-O coordination of T2.


Subject(s)
Copper , Sinorhizobium meliloti , Copper/chemistry , Nitrites/chemistry , Sinorhizobium meliloti/chemistry , Sinorhizobium meliloti/metabolism , Histidine/chemistry , Catalytic Domain , Oxidation-Reduction , Ligands , Glycine , Electron Spin Resonance Spectroscopy , Nitrite Reductases/chemistry
2.
Metallomics ; 12(12): 2084-2097, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33226040

ABSTRACT

Two domain copper-nitrite reductases (NirK) contain two types of copper centers, one electron transfer (ET) center of type 1 (T1) and a catalytic site of type 2 (T2). NirK activity is pH-dependent, which has been suggested to be produced by structural modifications at high pH of some catalytically relevant residues. To characterize the pH-dependent kinetics of NirK and the relevance of T1 covalency in intraprotein ET, we studied the biochemical, electrochemical, and spectroscopic properties complemented with QM/MM calculations of Bradyrhizobium japonicum NirK (BjNirK) and of its electron donor cytochrome c550 (BjCycA). BjNirK presents absorption spectra determined mainly by a S(Cys)3pπ → Cu2+ ligand-to-metal charge-transfer (LMCT) transition. The enzyme shows low activity likely due to the higher flexibility of a protein loop associated with BjNirK/BjCycA interaction. Nitrite is reduced at high pH in a T1-decoupled way without T1 → T2 ET in which proton delivery for nitrite reduction at T2 is maintained. Our results are analyzed in comparison with previous results found by us in Sinorhizobium meliloti NirK, whose main UV-vis absorption features are determined by S(Cys)3pσ/π → Cu2+ LMCT transitions.


Subject(s)
Bacterial Proteins/metabolism , Bradyrhizobium/metabolism , Cytochrome c Group/metabolism , Nitrite Reductases/metabolism , Bacterial Proteins/genetics , Bradyrhizobium/genetics , Cloning, Molecular , Copper/metabolism , Cytochrome c Group/genetics , Nitrite Reductases/genetics , Oxidation-Reduction , Up-Regulation
3.
Biochim Biophys Acta Gen Subj ; 1862(3): 752-760, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29051066

ABSTRACT

The Cys-His bridge as electron transfer conduit in the enzymatic catalysis of nitrite to nitric oxide by nitrite reductase from Sinorhizobium meliloti 2011 (SmNir) was evaluated by site-directed mutagenesis, steady state kinetic studies, UV-vis and EPR spectroscopic measurements as well as computational calculations. The kinetic, structural and spectroscopic properties of the His171Asp (H171D) and Cys172Asp (C172D) SmNir variants were compared with the wild type enzyme. Molecular properties of H171D and C172D indicate that these point mutations have not visible effects on the quaternary structure of SmNir. Both variants are catalytically incompetent using the physiological electron donor pseudoazurin, though C172D presents catalytic activity with the artificial electron donor methyl viologen (kcat=3.9(4) s-1) lower than that of wt SmNir (kcat=240(50) s-1). QM/MM calculations indicate that the lack of activity of H171D may be ascribed to the Nδ1H…OC hydrogen bond that partially shortcuts the T1-T2 bridging Cys-His covalent pathway. The role of the Nδ1H…OC hydrogen bond in the pH-dependent catalytic activity of wt SmNir is also analyzed by monitoring the T1 and T2 oxidation states at the end of the catalytic reaction of wt SmNir at pH6 and 10 by UV-vis and EPR spectroscopies. These data provide insight into how changes in Cys-His bridge interrupts the electron transfer between T1 and T2 and how the pH-dependent catalytic activity of the enzyme are related to pH-dependent structural modifications of the T1-T2 bridging chemical pathway.


Subject(s)
Bacterial Proteins/metabolism , Electron Transport , Nitrite Reductases/metabolism , Sinorhizobium meliloti/enzymology , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Copper/chemistry , Cysteine/chemistry , Electron Spin Resonance Spectroscopy , Histidine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation, Missense , Nitrite Reductases/chemistry , Nitrite Reductases/genetics , Nitrites/metabolism , Oxidation-Reduction , Point Mutation , Protein Conformation , Recombinant Proteins/metabolism , Sinorhizobium meliloti/genetics , Spectrophotometry, Ultraviolet
4.
J Biol Inorg Chem ; 19(6): 913-21, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24647732

ABSTRACT

Pseudoazurin (Paz) is the physiological electron donor to copper-containing nitrite reductase (Nir), which catalyzes the reduction of NO2 (-) to NO. The Nir reaction mechanism involves the reduction of the type 1 (T1) copper electron transfer center by the external physiological electron donor, intramolecular electron transfer from the T1 copper center to the T2 copper center, and nitrite reduction at the type 2 (T2) copper catalytic center. We report the cloning, expression, and characterization of Paz from Sinorhizobium meliloti 2011 (SmPaz), the ability of SmPaz to act as an electron donor partner of S. meliloti 2011 Nir (SmNir), and the redox properties of the metal centers involved in the electron transfer chain. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis together with UV-vis and EPR spectroscopies revealed that as-purified SmPaz is a mononuclear copper-containing protein that has a T1 copper site in a highly distorted tetrahedral geometry. The SmPaz/SmNir interaction investigated electrochemically showed that SmPaz serves as an efficient electron donor to SmNir. The formal reduction potentials of the T1 copper center in SmPaz and the T1 and T2 copper centers in SmNir, evaluated by cyclic voltammetry and by UV-vis- and EPR-mediated potentiometric titrations, are against an efficient Paz T1 center to Nir T1 center to Nir T2 center electron transfer. EPR experiments proved that as a result of the SmPaz/SmNir interaction in the presence of nitrite, the order of the reduction potentials of SmNir reversed, in line with T1 center to T2 center electron transfer being thermodynamically more favorable.


Subject(s)
Azurin/metabolism , Electrons , Nitrite Reductases/metabolism , Sinorhizobium meliloti/chemistry , Azurin/chemistry , Azurin/genetics , Oxidation-Reduction , Sinorhizobium meliloti/metabolism , Thermodynamics
5.
J Phys Chem A ; 116(50): 12314-20, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23186406

ABSTRACT

We report an EPR study at X- and Q-bands of polycrystalline and single crystal samples of the mixed copper(II) complex with L-glutamic acid (glu) and 1,10-phenantroline (phen), [Cu(glu)(phen)(H(2)O)](+) NO(3)(-)·2(H(2)O). The polycrystalline sample spectrum at Q-band showed well resolved g(∥ )and g(⊥) features and partially solved hyperfine structure at g(∥), typical for weakly exchange coupled systems. This is confirmed from the angular variation of the EPR spectra which shows for certain magnetic field orientations a partially solved hyperfine structure characteristic of weak exchange, whereas a single Lorentzian line corresponding to strong exchange is observed for others. Analysis and simulation of the single crystal EPR spectra were performed using the random frequency modulation model of Anderson. Numerical simulations of the angular variation of the EPR spectra showed that the narrowing of the hyperfine structure is due to an exchange-mediated mechanism in which transitions between any pair of lines are equally likely. The exchange interaction responsible for this process is mediated by hydrophobic interactions between two phen molecules and a mixed chemical path of the type CuA-O(ap)H···O-C-O(eq)-CuB, for which we evaluated an average isotropic exchange parameter |J| ≈ 25 × 10(-4) cm(-1).


Subject(s)
Copper/chemistry , Glutamic Acid/chemistry , Organometallic Compounds/chemistry , Phenanthrolines/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ligands , Models, Molecular , Molecular Conformation
6.
J Inorg Biochem ; 114: 8-14, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22687560

ABSTRACT

The entire nirK gene coding for a putative copper-nitrite reductase (Nir) from Sinorhizobium meliloti 2011 (Sm) was cloned and overexpressed heterologously in Escherichia coli for the first time. The spectroscopic and molecular properties of the enzyme indicate that SmNir is a green Nir with homotrimeric structure (42.5 kDa/subunit) containing two copper atoms per monomer, one of type 1 and the other of type 2. SmNir follows a Michaelis-Menten mechanism and is inhibited by cyanide. EPR spectra of the as-purified enzyme exhibit two magnetically different components associated with type 1 and type 2 copper centers in a 1:1 ratio. EPR characterization of the copper species obtained upon interaction of SmNir with nitrite, and catalytically-generated and exogenous NO reveals the formation of a Cu-NO EPR active species not detected before in closely related Nirs.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Nitric Oxide/chemistry , Nitrite Reductases/chemistry , Protein Subunits/chemistry , Sinorhizobium meliloti/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Cyanides/chemistry , Electron Spin Resonance Spectroscopy , Escherichia coli , Gene Expression , Kinetics , Molecular Sequence Data , Molecular Weight , Nitric Oxide/biosynthesis , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrites/chemistry , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sinorhizobium meliloti/chemistry
7.
Biometals ; 24(5): 891-902, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21432624

ABSTRACT

The purification and biochemical characterization of the respiratory membrane-bound nitrate reductase from Sinorhizobium meliloti 2011 (Sm NR) is reported together with the optimal conditions for cell growth and enzyme production. The best biomass yield was obtained under aerobic conditions in a fed-batch system using Luria-Bertani medium with glucose as carbon source. The highest level of Sm NR production was achieved using microaerobic conditions with the medium supplemented with both nitrate and nitrite. Sm NR is a mononuclear Mo-protein belonging to the DMSO reductase family isolated as a heterodimeric enzyme containing two subunits of 118 and 45 kDa. Protein characterization by mass spectrometry showed homology with respiratory nitrate reductases. UV-Vis spectra of as-isolated and dithionite reduced Sm NR showed characteristic absorption bands of iron-sulfur and heme centers. Kinetic studies indicate that Sm NR follows a Michaelis-Menten mechanism (K (m) = 97 ± 11 µM, V = 9.4 ± 0.5 µM min(-1), and k (cat) = 12.1 ± 0.6 s(-1)) and is inhibited by azide, chlorate, and cyanide with mixed inhibition patterns. Physiological and kinetic studies indicate that molybdenum is essential for NR activity and that replacement of this metal for tungsten inhibits the enzyme. Although no narGHI gene cluster has been annotated in the genome of rhizobia, the biochemical characterization indicates that Sm NR is a Mo-containing NR enzyme with molecular organization similar to NarGHI.


Subject(s)
Cell Membrane/metabolism , Nitrate Reductases/metabolism , Nitrates/metabolism , Sinorhizobium meliloti/metabolism , Azides/pharmacology , Chlorates/pharmacology , Cyanides/pharmacology , Kinetics , Molybdenum/metabolism , Nitrate Reductases/antagonists & inhibitors , Oxidation-Reduction , Sinorhizobium meliloti/enzymology , Structure-Activity Relationship
8.
Anal Bioanal Chem ; 376(6): 838-43, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12802564

ABSTRACT

An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.


Subject(s)
Dextropropoxyphene/analysis , Dipyrone/analysis , Neural Networks, Computer , Pharmaceutical Preparations/analysis , Anti-Inflammatory Agents, Non-Steroidal/analysis , Antitussive Agents/analysis , Computer Simulation , Electrochemistry , Molecular Structure , Nonlinear Dynamics , Pharmaceutical Preparations/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...