Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.518
Filter
1.
Geroscience ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829458

ABSTRACT

Experiencing decline in both cognition and mobility is associated with a substantially higher dementia risk than cognitive decline only. Metabolites associated with both cognitive and mobility declines may be early predictors of dementia and reveal specific pathways to dementia. We analyzed data from 2450 participants initially free of dementia who had 613 metabolites measured in plasma in 1998-1999 (mean age = 75.2 ± 2.9 years old, 37.8% Black, 50% women) from the Health, Aging and Body Composition study. Dementia diagnosis was determined by race-specific decline in 3MS scores, medication use, and hospital records through 2014. Cognition and mobility were repeatedly measured using 3MS and a 20-m walking test up to 10 years, respectively. We examined metabolite associations with changes in 3MS (n = 2046) and gait speed (n = 2019) using multivariable linear regression adjusted for age, sex, race, and baseline performance and examined metabolite associations with dementia risk using Cox regression. During a mean follow-up of 9.3 years, 534 (21.8%) participants developed dementia. On average, 3MS declined 0.47/year and gait declined 0.04 m/sec/year. After covariate adjustment, 75 metabolites were associated with cognitive decline, and 111 metabolites were associated with gait decline (FDR-adjusted p < 0.05). Twenty-six metabolites were associated with both cognitive and gait declines. Eighteen of 26 metabolites were associated with dementia risk (p < 0.05), notably amino acids, glycerophospholipids (lysoPCs, PCs, PEs), and sphingolipids. Results remained similar after adjusting for cardiovascular disease or apolipoprotein E ɛ4 carrier status. During aging, metabolomic profiles of cognitive decline and mobility decline show distinct and shared signatures. Shared metabolomic profiles suggest that inflammation and deficits in mitochondria and the urea cycle in addition to the central nervous system may play key roles in both cognitive and mobility declines and predict dementia. Future studies are warranted to investigate longitudinal metabolite changes and metabolomic markers with dementia pathologies.

2.
Nat Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834850

ABSTRACT

Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.

3.
Geroscience ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837025

ABSTRACT

Few studies have evaluated the association between circulating levels of 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D), and the endocrine disruptor bisphenol A (BPA), with risk of cardiovascular (CV) disease in elderly individuals. This was a cross-sectional study in a subgroup of elderly people from the InCHIANTI Biobank in Italy. We examined the association between circulating serum vitamin D metabolites, 1,25(OH)2D, 25(OH)D, and the endocrine disrupting agent BPA, with an arbitrary CV risk score and the European Society of Cardiology-based 10-year CV risk (SCORE2/SCORE2-OP) using univariate and multiple regression. In 299 individuals, blood samples were tested for serum values of 25(OH)D, 1,25(OH)2D and urinary BPA levels. One hundred eighty individuals (60.2%) were deficient (< 20 ng/ml) in 25(OH)D. Levels of 25(OH)D and 1,25(OH)2D were negatively correlated with CV risk score (p < 0.0001 for both) as well as SCORE2/SCORE2-OP (p < 0.0001 for both) while BPA levels were positively correlated with both CV risk scores (p < 0.0001 for both). In a logistic regression model, male gender (odds ratio; OR: 2.1, 95% CI:1.1-3.8, p = 0.022), obesity (OR:2.8, 95% CI:1.2-6.5, p = 0.016) and BPA levels ≥ 110 ng/dl (OR:20.9, 95% CI:9.4-46.8, p < 0.0001) were associated with deficient levels of 25(OH)D. 1,25(OH)2D levels < 41 ng/dl and 25(OH)D levels < 20 ng/ml were associated with CV risk score ≥ 3 (OR: 4.16, 95% CI: 2.32-7.4, p < 0.0001 and OR: 1.86, 95% CI: 1.02-3.39, p = 0.044) respectively and 1,25(OH)2D levels < 41 ng/dl were associated with SCORE2/SCORE2-OP of ≥ 20% (OR:2.98, 95% CI: 1.7-5.2, p = 0.0001). In this cross-sectional analysis, BPA exposure was associated with significantly reduced levels of vitamin D that in turn were significantly associated with increased CV risk.

5.
PLoS One ; 19(5): e0302696, 2024.
Article in English | MEDLINE | ID: mdl-38753612

ABSTRACT

Pathway enrichment analysis is a ubiquitous computational biology method to interpret a list of genes (typically derived from the association of large-scale omics data with phenotypes of interest) in terms of higher-level, predefined gene sets that share biological function, chromosomal location, or other common features. Among many tools developed so far, Gene Set Enrichment Analysis (GSEA) stands out as one of the pioneering and most widely used methods. Although originally developed for microarray data, GSEA is nowadays extensively utilized for RNA-seq data analysis. Here, we quantitatively assessed the performance of a variety of GSEA modalities and provide guidance in the practical use of GSEA in RNA-seq experiments. We leveraged harmonized RNA-seq datasets available from The Cancer Genome Atlas (TCGA) in combination with large, curated pathway collections from the Molecular Signatures Database to obtain cancer-type-specific target pathway lists across multiple cancer types. We carried out a detailed analysis of GSEA performance using both gene-set and phenotype permutations combined with four different choices for the Kolmogorov-Smirnov enrichment statistic. Based on our benchmarks, we conclude that the classic/unweighted gene-set permutation approach offered comparable or better sensitivity-vs-specificity tradeoffs across cancer types compared with other, more complex and computationally intensive permutation methods. Finally, we analyzed other large cohorts for thyroid cancer and hepatocellular carcinoma. We utilized a new consensus metric, the Enrichment Evidence Score (EES), which showed a remarkable agreement between pathways identified in TCGA and those from other sources, despite differences in cancer etiology. This finding suggests an EES-based strategy to identify a core set of pathways that may be complemented by an expanded set of pathways for downstream exploratory analysis. This work fills the existing gap in current guidelines and benchmarks for the use of GSEA with RNA-seq data and provides a framework to enable detailed benchmarking of other RNA-seq-based pathway analysis tools.


Subject(s)
Benchmarking , RNA-Seq , Humans , RNA-Seq/methods , Computational Biology/methods , Neoplasms/genetics , Databases, Genetic , Gene Expression Profiling/methods
6.
PLoS One ; 19(5): e0302381, 2024.
Article in English | MEDLINE | ID: mdl-38753665

ABSTRACT

As people age, their ability to maintain homeostasis in response to stressors diminishes. Physical frailty, a syndrome characterized by loss of resilience to stressors, is thought to emerge due to dysregulation of and breakdowns in communication among key physiological systems. Dynamical systems modeling of these physiological systems aims to model the underlying processes that govern response to stressors. We hypothesize that dynamical systems model summaries are predictive of age-related declines in health and function. In this study, we analyze data obtained during 75-gram oral-glucose tolerance tests (OGTT) on 1,120 adults older than 50 years of age from the Baltimore Longitudinal Study on Aging. We adopt a two-stage modeling approach. First, we fit OGTT curves with the Ackerman model-a nonlinear, parametric model of the glucose-insulin system-and with functional principal components analysis. We then fit linear and Cox proportional hazards models to evaluate whether usual gait speed and survival are associated with the stage-one model summaries. We also develop recommendations for identifying inadequately-fitting nonlinear model fits in a cohort setting with numerous heterogeneous response curves. These recommendations include: (1) defining a constrained parameter space that ensures biologically plausible model fits, (2) evaluating the relative discrepancy between predicted and observed responses of biological interest, and (3) identifying model fits that have notably poor model fit summary measures, such as [Formula: see text], relative to other fits in the cohort. The Ackerman model was unable to adequately fit 36% of the OGTT curves. The stage-two regression analyses found no associations between Ackerman model summaries and usual gait speed, nor with survival. The second functional principal component score was associated with faster gait speed (p<0.01) and improved survival (p<0.01).


Subject(s)
Aging , Glucose Tolerance Test , Humans , Aged , Aging/physiology , Female , Male , Middle Aged , Nonlinear Dynamics , Longitudinal Studies , Aged, 80 and over , Proportional Hazards Models , Blood Glucose/metabolism , Blood Glucose/analysis
7.
Geroscience ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809390

ABSTRACT

This study examined the association between in vivo skeletal mitochondrial function and digital free-living physical activity patterns-a measure that summarizes biological, phenotypic, functional, and environmental effects on mobility. Among 459 participants (mean age 68 years; 55% women) in the Baltimore Longitudinal Study of Aging, mitochondrial function was quantified as skeletal muscle oxidative capacity via post-exercise phosphocreatine recovery rate (τPCr) in the vastus lateralis muscle of the left thigh, using 31P magnetic resonance spectroscopy. Accelerometry was collected using a 7-day, 24-h wrist-worn protocol and summarized into activity amount, intensity, endurance, and accumulation patterning metrics. Linear regression, two-part linear and logistic (bout analyses), and linear mixed effects models (time-of-day analyses) were used to estimate associations between τPCr and each physical activity metric. Interactions by age, sex, and gait speed were tested. After covariate adjustment, higher τPCr (or poorer mitochondrial function) was associated with lower activity counts/day (ß = - 6593.7, SE = 2406.0; p = 0.006) and activity intensity (- 81.5 counts, SE = 12.9; p < 0.001). For activity intensity, the magnitude of association was greater for men and those with slower gait speed (interaction p < 0.02 for both). Conversely, τPCr was not associated with daily active minutes/day (p = 0.15), activity fragmentation (p = 0.13), or endurance at any bout length (p > 0.05 for all). Time-of-day analyses show participants with high τPCr were less active from 6:00 a.m. to 12:00 a.m. than those with low τPCr. Results indicate that poorer skeletal mitochondrial function is primarily associated with lower engagement in high intensity activities. Our findings help define the connection between laboratory-measured mitochondrial function and real-world physical activity behavior.

8.
Article in English | MEDLINE | ID: mdl-38742659

ABSTRACT

BACKGROUND: Daily physical activity patterns differ by Alzheimer's disease (AD) status and might signal cognitive risk. It is critical to understand whether patterns are disrupted early in the AD pathological process. Yet, whether established AD risk markers (ß-amyloid [Aß] or apolipoprotein E-ε4 [APOE-ε4]) are associated with differences in objectively measured activity patterns among cognitively unimpaired older adults is unclear. METHODS: Wrist accelerometry, brain Aß (+/-), and APOE-ε4 genotype were collected in 106 (Aß) and 472 (APOE-ε4) participants (mean age 76 [standard deviation{SD}: 8.5) or 75 [SD: 9.2] years, 60% or 58% women) in the Baltimore Longitudinal Study of Aging. Adjusted linear and function-on-scalar regression models examined whether Aß or APOE-ε4 status was cross-sectionally associated with activity patterns (amount, variability, or fragmentation) overall and by time of day, respectively. Differences in activity patterns by combinations of Aß and APOE-ε4 status were descriptively examined (n = 105). RESULTS: There were no differences in any activity pattern by Aß or APOE-ε4 status overall. Aß+ was associated with lower total amount and lower within-day variability of physical activity overnight and early evening, and APOE-ε4 carriers had higher total amount of activity in the evening and lower within-day variability of activity in the morning. Diurnal curves of activity were blunted among those with Aß+ regardless of APOE-ε4 status, but only when including older adults with mild cognitive impairment/dementia. CONCLUSIONS: Aß+ in cognitively unimpaired older adults might manifest as lower amount and variability of daily physical activity, particularly during overnight/evening hours. Future research is needed to examine changes in activity patterns in larger samples and by other AD biomarkers.


Subject(s)
Accelerometry , Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Biomarkers , Humans , Female , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Male , Aged , Apolipoprotein E4/genetics , Amyloid beta-Peptides/metabolism , Longitudinal Studies , Risk Factors , Aged, 80 and over , Genotype , Cross-Sectional Studies , Exercise/physiology , Baltimore
10.
Neurobiol Dis ; 197: 106539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789058

ABSTRACT

BACKGROUND: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. METHODS: We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). FINDINGS: In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM âˆ¼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. INTERPRETATION: Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.


Subject(s)
Dementia , Genome-Wide Association Study , Gray Matter , Iron , Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/diagnostic imaging , Male , Dementia/genetics , Dementia/pathology , Dementia/diagnostic imaging , Female , Iron/metabolism , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/metabolism , United Kingdom/epidemiology , Aged , Middle Aged , Cohort Studies , Biological Specimen Banks , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , UK Biobank
11.
Article in English | MEDLINE | ID: mdl-38761087

ABSTRACT

Tryptophan (TRP) metabolites along the kynurenine (KYN) pathway (KP) have been found to influence muscle. Pro-inflammatory cytokines are known to stimulate the degradation of TRP down the KP. Given that both inflammation and KP metabolites have been connected with loss of muscle, we assessed the potential mediating role of KP metabolites on inflammation and muscle mass in older men. 505 men (85.0±4.2yrs) from the Osteoporotic Fractures in Men cohort study with measured D3-creatine dilution (D3Cr) muscle mass, KP metabolites, and inflammation markers (C-reactive protein (CRP), alpha-1-acid glycoprotein (AGP) and a subsample (n=305) with interleukin (IL-6, IL-1ß, IL-17A) and tumor necrosis factor-α (TNF-α)) were included in the analysis. KP metabolites and inflammatory markers were measured using liquid chromatography-tandem mass spectrometry and immunoassays, respectively. 23-92% of the inverse relationship between inflammatory markers and D3Cr muscle mass was mediated by KP metabolites (indirect effect p<0.05). 3-hydroxyanthranilic acid (3-HAA), quinolinic acid (QA), TRP, xanthurenic acid (XA), KYN/TRP, 3-hydroxykynurenine (3-HK)/3-HAA, QA/3-HAA, and nicotinamide (NAM)/QA mediated the AGP relationship. 3-HAA, QA, KYN/TRP, 3-HK/XA, HKr ratio, 3-HK/3-HAA, QA/3-HAA, and NAM/QA mediated the CRP. KYN/TRP, 3-HK/XA, and NAM/QA explained the relationship for IL-6 and 3-HK/XA and QA/3-HAA for TNF-α. No mediation effect was observed for the other cytokines (indirect effect p>0.05). KP metabolites, particularly higher ratios of KYN/TRP, 3-HK/XA, 3-HK/3-HAA, QA/3-HAA and a lower ratio of NAM/QA, mediated the relationship between inflammation and low muscle mass. Our preliminary cross-sectional data suggest that interventions to alter D3Cr muscle mass may focus on KP metabolites rather than inflammation per se.

12.
Sci Rep ; 14(1): 9339, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653745

ABSTRACT

Sensory impairment and brain atrophy is common among older adults, increasing the risk of dementia. Yet, the degree to which multiple co-occurring sensory impairments (MSI across vision, proprioception, vestibular function, olfactory, and hearing) are associated with brain morphometry remain unexplored. Data were from 208 cognitively unimpaired participants (mean age 72 ± 10 years; 59% women) enrolled in the Baltimore Longitudinal Study of Aging. Multiple linear regression models were used to estimate cross-sectional associations between MSI and regional brain imaging volumes. For each additional sensory impairment, there were associated lower orbitofrontal gyrus and entorhinal cortex volumes but higher caudate and putamen volumes. Participants with MSI had lower mean volumes in the superior frontal gyrus, orbitofrontal gyrus, superior parietal lobe, and precuneus compared to participants with < 2 impairments. While MSI was largely associated with lower brain volumes, our results suggest the possibility that MSI was associated with higher basal ganglia volumes. Longitudinal analyses are needed to evaluate the temporality and directionality of these associations.


Subject(s)
Aging , Brain , Humans , Female , Aged , Male , Brain/diagnostic imaging , Brain/pathology , Longitudinal Studies , Cross-Sectional Studies , Aging/physiology , Aging/pathology , Baltimore , Aged, 80 and over , Magnetic Resonance Imaging , Middle Aged , Organ Size , Atrophy
13.
J Med Imaging (Bellingham) ; 11(2): 024008, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38571764

ABSTRACT

Purpose: Two-dimensional single-slice abdominal computed tomography (CT) provides a detailed tissue map with high resolution allowing quantitative characterization of relationships between health conditions and aging. However, longitudinal analysis of body composition changes using these scans is difficult due to positional variation between slices acquired in different years, which leads to different organs/tissues being captured. Approach: To address this issue, we propose C-SliceGen, which takes an arbitrary axial slice in the abdominal region as a condition and generates a pre-defined vertebral level slice by estimating structural changes in the latent space. Results: Our experiments on 2608 volumetric CT data from two in-house datasets and 50 subjects from the 2015 Multi-Atlas Abdomen Labeling Challenge Beyond the Cranial Vault (BTCV) dataset demonstrate that our model can generate high-quality images that are realistic and similar. We further evaluate our method's capability to harmonize longitudinal positional variation on 1033 subjects from the Baltimore longitudinal study of aging dataset, which contains longitudinal single abdominal slices, and confirmed that our method can harmonize the slice positional variance in terms of visceral fat area. Conclusion: This approach provides a promising direction for mapping slices from different vertebral levels to a target slice and reducing positional variance for single-slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.

14.
Aging Cell ; : e14166, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659245

ABSTRACT

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.

15.
Age Ageing ; 53(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38615247

ABSTRACT

BACKGROUND: Lower skeletal muscle mitochondrial function is associated with future cognitive impairment and mobility decline, but the biological underpinnings for these associations are unclear. We examined metabolomic markers underlying skeletal muscle mitochondrial function, cognition and motor function. METHODS: We analysed data from 560 participants from the Baltimore Longitudinal Study of Aging (mean age: 68.4 years, 56% women, 28% Black) who had data on skeletal muscle oxidative capacity (post-exercise recovery rate of phosphocreatine, kPCr) via 31P magnetic resonance spectroscopy and targeted plasma metabolomics using LASSO model. We then examined which kPCr-related markers were also associated with cognition and motor function in a larger sample (n = 918, mean age: 69.4, 55% women, 27% Black). RESULTS: The LASSO model revealed 24 metabolites significantly predicting kPCr, with the top 5 being asymmetric dimethylarginine, lactic acid, lysophosphatidylcholine a C18:1, indoleacetic acid and triacylglyceride (17:1_34:3), also significant in multivariable linear regression. The kPCr metabolite score was associated with cognitive or motor function, with 2.5-minute usual gait speed showing the strongest association (r = 0.182). Five lipids (lysophosphatidylcholine a C18:1, phosphatidylcholine ae C42:3, cholesteryl ester 18:1, sphingomyelin C26:0, octadecenoic acid) and 2 amino acids (leucine, cystine) were associated with both cognitive and motor function measures. CONCLUSION: Our findings add evidence to the hypothesis that mitochondrial function is implicated in the pathogenesis of cognitive and physical decline with aging and suggest that targeting specific metabolites may prevent cognitive and mobility decline through their effects on mitochondria. Future omics studies are warranted to confirm these findings and explore mechanisms underlying mitochondrial dysfunction in aging phenotypes.


Subject(s)
Cognitive Dysfunction , Lysophosphatidylcholines , Female , Humans , Aged , Male , Longitudinal Studies , Muscle, Skeletal , Cognition
16.
Article in English | MEDLINE | ID: mdl-38457361

ABSTRACT

There is consistent evidence that immune response declines with aging, with wide interindividual variability and a still unclear relationship with the development of frailty. To address this question, we assessed the role of immune resilience (capacity to restore immune functions), operationalized as the neutrophil-to-lymphocytes ratio (NL-ratio) and monocytes-to-lymphocytes ratio (ML-ratio), in the pathway that from robust status shifts to pre-frailty and frailty, and finally to death. The InCHIANTI study enrolled representative samples from the registry lists of 2 towns in Tuscany, Italy. Baseline data were collected in 1998, with follow-up visits every 3 years. The 1 453 participants enrolled were assessed and followed for lifestyle, clinical condition, physical performance, clinical, and physiological measures. For the purpose of this analysis, we used only 1 022 subjects aged 65 or older at baseline. Participants in the 3 highest deciles of distribution for NL-ratio (>2.44) were more likely to experience a transition from robust to pre-frail, and to overt frailty status. Moreover, NL-ratio (tenth decile > 3.53) and ML-ratio (tenth decile > 2.02) were both predictors of mortality. These results were independent of chronological age, sex, comorbidities, and chronic low-grade inflammation assessed by high sensitivity C-reactive protein measurement. The 2 leucocytes-derived ratios, NL-ratio and ML-ratio, represent markers of immune resilience and predict changes in physical resilience and mortality. These biomarkers are inexpensive because they are based on data routinely collected in clinical practice and can be used to assess the risk of frailty progression and mortality. Clinical Trials Registration Number: NCT01331512.


Subject(s)
Frailty , Resilience, Psychological , Humans , Aged , Follow-Up Studies , Aging/physiology , Inflammation , Frail Elderly
17.
Alzheimers Dement (Amst) ; 16(1): e12564, 2024.
Article in English | MEDLINE | ID: mdl-38476637

ABSTRACT

INTRODUCTION: We assessed whether midlife sensory and motor functions added to prediction models using the Cardiovascular Risk Factors, Aging, and Incidence of Dementia Score (CAIDE) and Framingham Risk Score (FRS) improve risk predictions of 10-year changes in biomarkers of neurodegeneration and Alzheimer's disease. METHODS: Longitudinal data of N = 1529 (mean age 49years) Beaver Dam Offspring Study participants from baseline, 5-year, and 10-year follow-up were included. We tested whether including baseline sensory (hearing, vision, olfactory) impairment and motor function measures improves CAIDE or FRS risk predictions of 10-year incidence of biomarker positivity of serum-based neurofilament light chain (NfL) and amyloid beta (Aß)42/Aß40 using logistic regression. RESULTS: Adding sensory and motor measures to CAIDE-only and FRS-only models significantly improved NfL and Aß42/Aß40 positivity predictions in adults above the age of 55. DISCUSSION: Including midlife sensory and motor function improved long-term biomarker positivity predictions. Non-invasive sensory and motor assessments could contribute to cost-effective screening tools that identify individuals at risk for neurodegeneration early to target interventions and preventions. Highlights: Sensory and motor measures improve risk prediction models of neurodegenerative biomarkersSensory and motor measures improve risk prediction models of AD biomarkersPrediction improvements were strongest in late midlife (adults >55 years of age)Sensory and motor assessments may help identify high-risk individuals early.

19.
J Am Geriatr Soc ; 72(5): 1574-1582, 2024 May.
Article in English | MEDLINE | ID: mdl-38445895

ABSTRACT

The National Institute on Aging (NIA), part of the National Institutes of Health (NIH), was founded in 1974 to support and conduct research on aging and the health and well-being of older adults. Fifty years ago, the concept of studying aging generated much skepticism. Early NIA-funded research findings helped establish the great value of aging research and provided the foundation for significant science advances that have improved our understanding of the aging process, diseases and conditions associated with aging, and the effects of health inequities, as well as the need to promote healthy aging lifestyles. Today, we celebrate the many important contributions to aging research made possible by NIA, as well as opportunities to continue to make meaningful progress. NIA emphasizes that the broad aging research community must continue to increase and expand our collective efforts to recruit and train a diverse next generation of aging researchers.


Subject(s)
Aging , Anniversaries and Special Events , Biomedical Research , National Institute on Aging (U.S.) , Humans , United States , Aged , Aging/physiology , Biomedical Research/history , History, 20th Century , History, 21st Century , Healthy Aging , Geriatrics/history
20.
Am J Clin Nutr ; 119(5): 1338-1345, 2024 May.
Article in English | MEDLINE | ID: mdl-38447686

ABSTRACT

BACKGROUND: Hearing loss, a public health issue in older populations, is closely related to functional decline. OBJECTIVE: To investigate the longitudinal associations between 4 dietary indices and hearing status. METHODS: Data from the Baltimore Longitudinal Study of Aging were used and included 882 participants ≥45 y of age. Dietary intake was assessed using a validated food frequency questionnaire, and 4 dietary scores (Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay diet [MIND], Mediterranean style diet score [MDS], Alternative Healthy Eating Index [AHEI], and Healthy Eating Index [HEI]) were calculated as averages over time. Hearing status was examined using pure-tone audiometry, and pure-tone average (PTA) of hearing thresholds were calculated at speech-level (PTA(500, 1000, 2000, 4000 Hz)), low (PTA(500, 1000 Hz)), and high (PTA(4000, 8000 Hz)) frequencies, with lower thresholds indicating better hearing. Multivariable linear mixed-effect models were used to examine associations between dietary indices and hearing threshold change over time adjusted for confounders. RESULTS: At baseline, the mean age of participants was 67 y and 55% were female. Over a median of 8 y of follow-up, MDS ≥7 was associated with 3.5 (95% CI: -6.5, -0.4) and 5.0 (95% CI: -9.1, -1.0) dB lower PTA(500, 1000, 2000, 4000 Hz) and PTA(4000, 8000 Hz), respectively, compared with MDS ≤3; the highest tertile of the AHEI was associated with 2.3 (95% CI: -4.6, -0.1) and 5.0 (95% CI: -8.0, -2.0) dB lower PTA(500, 1000, 2000, 4000 Hz) and PTA(4000, 8000 Hz); and each standard deviation increment in HEI was associated with 1.6 dB (95% CI: -2.7, -0.6), 1.1 dB (95% CI: -2.1, -0.1), and 2.1 dB (95% CI: -3.5, -0.6) lower PTA(500, 1000, 2000, 4000 Hz), PTA(500, 1000 Hz), and PTA(4000, 8000 Hz), respectively. CONCLUSIONS: Adherence to healthy dietary patterns was associated with better hearing status, with stronger associations at high frequencies. Am J Clin Nutr 20xx;x:xx.


Subject(s)
Hearing Loss , Humans , Female , Male , Longitudinal Studies , Middle Aged , Aged , Baltimore , Diet , Aging/physiology , Diet, Mediterranean , Hearing , Diet, Healthy
SELECTION OF CITATIONS
SEARCH DETAIL
...