Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 602(13): 3207-3224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38367250

ABSTRACT

High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. KEY POINTS: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH.


Subject(s)
Aquaporin 2 , Down-Regulation , Receptors, Calcium-Sensing , Vasopressins , Animals , Aquaporin 2/metabolism , Aquaporin 2/genetics , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Mice , Vasopressins/metabolism , Gene Knock-In Techniques , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL , Male , Signal Transduction , Phenotype , Hypercalciuria/genetics , Hypercalciuria/metabolism , Hypercalciuria/drug therapy , Calcium/metabolism , Phosphorylation , Hypocalcemia , Hypoparathyroidism/congenital
2.
Int J Biochem Cell Biol ; 149: 106261, 2022 08.
Article in English | MEDLINE | ID: mdl-35798273

ABSTRACT

Renal collecting duct principal cells play a key role in controlling body water balance. Principal cells express the water channels AQP2, AQP3, and AQP4 that mediate renal water reabsorption. AQP3 and AQP4 are expressed at the basolateral membrane constitutively. Conversely, AQP2 is localized in intracellular vesicles and translocates to the plasma membrane under vasopressin action. Stimulation with vasopressin activates the cAMP/PKA signal transduction pathway that induces the redistribution of AQP2 from an intracellular pool to the apical plasma membrane. AQP2 trafficking and function depend on multiple post-translational modifications. Moreover, several proteins control different steps activated by the vasopressin stimulation that triggers the redistribution of the AQP2 vesicles. A-kinase anchoring proteins (AKAPs) together with phosphodiesterases and adenylate cyclases play crucial roles in modulating local changes of cAMP. Soluble N-ethylmaleimide sensitive fusion factor attachment protein receptors (SNARE), cytoskeletal proteins, and the small GTPases of the Rho family regulate the fusion and the endocytotic retrieval of AQP2 vesicles. Abnormal vasopressin signaling and altered AQP2 expression or trafficking can lead to disorders characterized by deregulated mechanisms controlling water homeostasis. This review provides updated data on the molecular signals regulating vasopressin-induced AQP2 trafficking in health and disease.


Subject(s)
Aquaporin 2 , Vasopressins , A Kinase Anchor Proteins/metabolism , Aquaporin 2/metabolism , Cell Membrane/metabolism , Endocytosis , Kidney/metabolism , Vasopressins/metabolism , Vasopressins/pharmacology , Water
3.
Front Physiol ; 13: 858867, 2022.
Article in English | MEDLINE | ID: mdl-35514354

ABSTRACT

Exposure to actual or simulated microgravity results in alterations of renal function, fluid redistribution, and bone loss, which is coupled to a rise of urinary calcium excretion. We provided evidence that high calcium delivery to the collecting duct reduces local Aquaporin 2 (AQP2)-mediated water reabsorption under vasopressin action, thus limiting the maximal urinary concentration to reduce calcium saturation. To investigate early renal adaptation into simulated microgravity, we investigated the effects of 10 days of strict bedrest in 10 healthy volunteers. We report here that 10 days of inactivity are associated with a transient, significant decrease (day 5) in vasopressin (copeptin) paralleled by a decrease in AQP2 excretion, consistent with an increased central volume to the heart, resulting in reduced water reabsorption. Moreover, bedrest caused a significant increase in calciuria secondary to bone demineralization paralleled by a decrease in PTH. Urinary osteopontin, a glycoprotein exerting a protective effect on stone formation, was significantly reduced during bedrest. Moreover, a significant increase in adrenomedullin (day 5), a peptide with vasodepressor properties, was observed at day 5, which may contribute to the known reduced orthostatic capacity post-bedrest. We conclude that renal function is altered in simulated microgravity and is associated with an early increase in the risk of stone formation and reduced orthostatic capacity post-bedrest within a few days of inactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...