Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 78(2): 179-98, 2005.
Article in English | MEDLINE | ID: mdl-15511558

ABSTRACT

The concentration of radon-222 has been monitored since 1995 in the atmosphere of a 2 m transverse dimension, 128 m long, dead-end horizontal tunnel located in the French Alps, at an altitude of 1600 m. Most of the time, the radon concentration is stable, with an average value ranging from 200 Bq m(-3) near the entrance to about 1000 Bq m(-3) in the most confined section, with an equilibrium factor between radon and its short-lived decay products varying from 0.61 to 0.78. However, radon bursts are repeatedly observed, with amplitudes reaching up to 36 x 10(3) Bq m(-3) and durations varying from one to several weeks, with similar spatial variations along the tunnel as the background concentration. These spatial variations are qualitatively interpreted in terms of natural ventilation. Comparing the radon background concentration with the measured radon exhalation flux at the wall yields an estimate of 8+/-2 x 10(-6) s(-1) (0.03+/-0.007 h(-1)) for the ventilation rate. The hypothesis that the bursts could be due to transient changes in ventilation can be ruled out. Thus, the bursts are the results of transient increased radon exhalation at the walls, that could be due to meteorological effects or possibly combined hydrological and mechanical forcing associated with the water level variations of the nearby Roselend reservoir lake. Such studies are of interest for radiation protection in poorly ventilated underground settings, and, ultimately, for a better understanding of radon exhalation associated with tectonic or volcanic processes.


Subject(s)
Air Pollutants, Radioactive/analysis , Geology , Radon/analysis , Air Movements , France , Geological Phenomena , Radiation Monitoring/methods , Time Factors , Ventilation
2.
J Environ Radioact ; 63(1): 49-64, 2002.
Article in English | MEDLINE | ID: mdl-12230135

ABSTRACT

An experimental study concerning the transport of 222Rn in uranium mill tailings (UMTs) and in the cover layer was launched in 1997 with the participation of the French uranium mining company (COGEMA). Evaluation of the cover layer's effectiveness in reducing 222Rn flux emanating from UMTs was one of its objectives. In the first phase, the 222Rn flux densities were measured regularly on a UMT layer. In the second phase, the UMT was covered with a one-meter layer of compacted material consisting of crushed waste rock derived from mining activities. Radon-222 flux was then measured at the surface of this cover layer. Observations were compared with radon flux calculated using TRACI, a model for vertical water and gas flow and radon transport. The results show that the calculations bear a fair resemblance to the observations in both cases. They also show that the effectiveness of the cover layer calculated with TRACI, using the thickness and textural properties of the cover material, is very close to the measured effectiveness.


Subject(s)
Mining , Models, Chemical , Radiation Protection/methods , Radon/analysis , Soil Pollutants, Radioactive/analysis , Uranium , France , Humans , Radiation Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...