Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cancer Chemother Pharmacol ; 93(3): 177-189, 2024 03.
Article in English | MEDLINE | ID: mdl-38010394

ABSTRACT

PURPOSE: Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2­negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546). METHODS: We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations. The primary objective was to examine the PD effects of talazoparib; the secondary objective was to determine overall response rate (ORR). Tumor biopsies were mandatory at baseline and post-treatment on day 8 (optional at disease progression). Biopsies were analyzed for PARylation, DNA damage response (γH2AX), and epithelial‒mesenchymal transition. RESULTS: Nine patients enrolled in this trial. Four of six patients (67%) evaluable for the primary PD endpoint exhibited a nuclear γH2AX response on day 8 of treatment, and five of six (83%) also exhibited strong suppression of PARylation. A transition towards a more mesenchymal phenotype was seen in 4 of 6 carcinoma patients, but this biological change did not affect γH2AX or PAR responses. The ORR was 55% with the five partial responses lasting a median of six cycles. CONCLUSION: Intra-tumoral DNA damage response and inhibition of PARP enzymatic activity were confirmed in patients with advanced solid tumors harboring BRCA1/2 mutations after 8 days of talazoparib treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Adult , Female , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Leukocytes, Mononuclear , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics
2.
N Engl J Med ; 389(10): 911-921, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37672694

ABSTRACT

BACKGROUND: Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a poor prognosis and no established therapy. Recently, encouraging responses to immune checkpoint inhibitors have been reported. METHODS: We conducted an investigator-initiated, multicenter, single-group, phase 2 study of the anti-programmed death ligand 1 (PD-L1) agent atezolizumab in adult and pediatric patients with advanced ASPS. Atezolizumab was administered intravenously at a dose of 1200 mg (in patients ≥18 years of age) or 15 mg per kilogram of body weight with a 1200-mg cap (in patients <18 years of age) once every 21 days. Study end points included objective response, duration of response, and progression-free survival according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, as well as pharmacodynamic biomarkers of multistep drug action. RESULTS: A total of 52 patients were evaluated. An objective response was observed in 19 of 52 patients (37%), with 1 complete response and 18 partial responses. The median time to response was 3.6 months (range, 2.1 to 19.1), the median duration of response was 24.7 months (range, 4.1 to 55.8), and the median progression-free survival was 20.8 months. Seven patients took a treatment break after 2 years of treatment, and their responses were maintained through the data-cutoff date. No treatment-related grade 4 or 5 adverse events were recorded. Responses were noted despite variable baseline expression of programmed death 1 and PD-L1. CONCLUSIONS: Atezolizumab was effective at inducing sustained responses in approximately one third of patients with advanced ASPS. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03141684.).


Subject(s)
Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Sarcoma, Alveolar Soft Part , Adolescent , Adult , Child , Humans , Infant, Newborn , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Body Weight , Sarcoma, Alveolar Soft Part/drug therapy , Administration, Intravenous
3.
Cancer Biol Ther ; 23(1): 265-280, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35387560

ABSTRACT

Cancer metastasis is a major cause of cancer-related mortality. Strategies to reduce metastases are needed especially in lung cancer, the most common cause of cancer mortality. We previously reported increased ubiquitin-specific peptidase 18 (USP18) expression in lung and other cancers. Engineered reduction of USP18 expression repressed lung cancer growth and promoted apoptosis. This deubiquitinase (DUB) stabilized targeted proteins by removing the complex interferon-stimulated gene 15 (ISG15). This study explores if the loss of USP18 reduced lung cancer metastasis. USP18 knock-down in lung cancer cells was independently achieved using small hairpin RNAs (shRNAs) and small interfering RNAs (siRNAs). USP18 knock-down reduced lung cancer growth, wound-healing, migration, and invasion versus controls (P < .001) and markedly decreased murine lung cancer metastases (P < .001). Reverse Phase Protein Arrays (RPPAs) in shRNA knock-down lung cancer cells showed that 14-3-3ζ protein was regulated by loss of USP18. ISG15 complexed with 14-3-3ζ protein reducing its stability. Survival in lung adenocarcinomas (P < .0015) and other cancers was linked to elevated 14-3-3ζ expression as assessed by The Cancer Genome Atlas (TCGA). The findings were confirmed and extended using 14-3-3ζ immunohistochemical assays of human lung cancer arrays and syngeneic murine lung cancer metastasis models. A direct 14-3-3ζ role in controlling lung cancer metastasis came from engineered 14-3-3ζ knock-down in lung cancer cell lines and 14-3-3ζ rescue experiments that reversed migration and invasion inhibition. Findings presented here revealed that USP18 controlled metastasis by regulating 14-3-3ζ expression. These data provide a strong rationale for developing a USP18 inhibitor to combat metastases.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Animals , Humans , Lung Neoplasms/pathology , Mice , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism
4.
Oncotarget ; 11(44): 3959-3971, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33216844

ABSTRACT

BACKGROUND: TRC102 inhibits base excision repair by binding abasic sites and preventing AP endonuclease processing; it potentiates the activity of alkylating agents, including temozolomide, in murine models. In published xenograft studies, TRC102 enhanced the antitumor effect of temozolomide regardless of cell line genetic characteristics, e.g., O6-methylguanine DNA methyltransferase (MGMT), mismatch repair (MMR), or p53 status. MATERIALS AND METHODS: We conducted a phase 1 trial of TRC102 with temozolomide given orally on days 1-5 of 28-day cycles in adult patients with refractory solid tumors that had progressed on standard therapy. Tumor induction of nuclear biomarkers of DNA damage response (DDR) γH2AX, pNBs1, and Rad51 was assessed in the context of MGMT and MMR protein expression for expansion cohort patients. RESULTS: Fifty-two patients were enrolled (37 escalation, 15 expansion) with 51 evaluable for response. The recommended phase 2 dose was 125 mg TRC102, 150 mg/m2 temozolomide QDx5. Common adverse events (grade 3/4) included anemia (19%), lymphopenia (12%), and neutropenia (10%). Four patients achieved partial responses (1 non-small cell lung cancer, 2 granulosa cell ovarian cancer, and 1 colon cancer) and 13 patients had a best response of stable disease. Retrospective analysis of 15 expansion cohort patients did not demonstrate a correlation between low tumor MGMT expression and patient response, but treatment induced nuclear Rad51 responses in 6 of 12 patients. CONCLUSIONS: The combination of TRC 102 with temozolomide is active, with 4 of 51 patients experiencing a partial response and 13 of 51 experiencing stable disease, and the side effect profile is manageable.

5.
J Clin Oncol ; 38(14): 1633-1640, 2020 05 10.
Article in English | MEDLINE | ID: mdl-32134701

ABSTRACT

PURPOSE: National Cancer Institute (NCI)-sponsored clinical trial network studies frequently require biopsy specimens for pharmacodynamic and molecular biomarker analyses, including paired pre- and post-treatment samples. The purpose of this meeting of NCI-sponsored investigators was to identify local institutional standard procedures found to ensure quantitative and qualitative specimen adequacy. METHODS: NCI convened a conference on best biopsy practices, focusing on the clinical research community. Topics discussed were (1) criteria for specimen adequacy in the personalized medicine era, (2) team-based approaches to ensure specimen adequacy and quality control, and (3) risk considerations relevant to academic and community practitioners and their patients. RESULTS AND RECOMMENDATIONS: Key recommendations from the convened consensus panel included (1) establishment of infrastructure for multidisciplinary biopsy teams with a formalized information capture process, (2) maintenance of standard operating procedures with regular team review, (3) optimization of tissue collection and yield methodology, (4) incorporation of needle aspiration and other newer techniques, and (5) commitment of stakeholders to use of guideline documents to increase awareness of best biopsy practices, with the goal of universally improving tumor biopsy practices.


Subject(s)
Biopsy/methods , Clinical Trials as Topic/methods , Liver Neoplasms/surgery , Lung Neoplasms/surgery , Humans , National Cancer Institute (U.S.) , Treatment Outcome , United States
6.
Cancer Res ; 80(2): 304-318, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31732654

ABSTRACT

The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates ß-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of ß-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma/drug therapy , Cell Plasticity/drug effects , Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/pathology , Animals , Antigens, CD/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Biopsy, Large-Core Needle , Cadherins/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , Indazoles , Male , Mice , Neoplastic Stem Cells/drug effects , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vimentin/metabolism , Xenograft Model Antitumor Assays , beta Catenin/metabolism
8.
J Oncol Pract ; : JOP1800092, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30285529

ABSTRACT

PURPOSE:: Research biopsy specimens collected in clinical trials often present requirements beyond those of tumor biopsy specimens collected for diagnostic purposes. Research biopsies underpin hypothesis-driven drug development, pharmacodynamic assessment of molecularly targeted anticancer agents, and, increasingly, genomic assessment for precision medicine; insufficient biopsy specimen quality or quantity therefore compromises the scientific value of a study and the resources devoted to it, as well as each patient's contribution to and potential benefit from a clinical trial. METHODS:: To improve research biopsy specimen quality, we consulted with other translational oncology teams and reviewed current best practices. RESULTS:: Among the recommendations were improving communication between oncologists and interventional radiologists, providing feedback on specimen sufficiency, increasing academic recognition and financial support for the time investment required by radiologists to collect and preserve research biopsy specimens, and improving real-time assessment of tissue quality. CONCLUSION:: Implementing these recommendations at the National Cancer Institute's Developmental Therapeutics Clinic has demonstrably improved the quality of biopsy specimens collected; more widespread dissemination of these recommendations beyond large clinical cancer centers is possible and will be of value to the community in improving clinical research and, ultimately, patient care.

9.
PLoS One ; 12(4): e0175414, 2017.
Article in English | MEDLINE | ID: mdl-28403214

ABSTRACT

Circulating tumor cells (CTCs) are increasingly employed for research and clinical monitoring of cancer, though most current methods do not permit the isolation of non-epithelial tumor cells. Furthermore, CTCs isolated with antibody-dependent methods are not suitable for downstream experimental uses, including in vitro culturing and implantation in vivo. In the present study, we describe the development, validation, and transfer across laboratories of a new antibody-independent device for the enrichment of CTCs from blood samples of patients with various cancer diagnoses. The ApoStream® device uses dielectrophoresis (DEP) field-flow assist to separate non-hematopoietic cells from the peripheral blood mononuclear fraction by exposing cells in a laminar flow stream to a critical alternating current frequency. The ApoStream® device was calibrated and validated in a formal cross-laboratory protocol using 3 different cancer cell lines spanning a range of distinct phenotypes (A549, MDA-MB-231, and ASPS-1). In spike-recovery experiments, cancer cell recovery efficiencies appeared independent of spiking level and averaged between 68% and 55%, depending on the cell line. No inter-run carryover was detected in control samples. Moreover, the clinical-readiness of the device in the context of non-epithelial cancers was evaluated with blood specimens from fifteen patients with metastatic sarcoma. The ApoStream® device successfully isolated CTCs from all patients with sarcomas examined, and the phenotypic heterogeneity of the enriched cells was demonstrated by fluorescence in situ hybridization or with multiplex immunophenotyping panels. Therefore, the ApoStream® technology expands the clinical utility of CTC evaluation to mesenchymal cancers.


Subject(s)
Cell Separation/instrumentation , Neoplastic Cells, Circulating/metabolism , Sarcoma, Alveolar Soft Part/blood , A549 Cells , Biomarkers, Tumor/metabolism , Case-Control Studies , Cell Separation/methods , Co-Repressor Proteins , Humans , Repressor Proteins/metabolism , Sarcoma, Alveolar Soft Part/pathology
10.
Clin Cancer Res ; 23(15): 4066-4076, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28356425

ABSTRACT

Purpose: We aimed to establish the MTD of the poly (ADP-ribose) (PAR) polymerase inhibitor, veliparib, in combination with carboplatin in germline BRCA1- and BRCA2- (BRCA)-associated metastatic breast cancer (MBC), to assess the efficacy of single-agent veliparib, and of the combination treatment after progression, and to correlate PAR levels with clinical outcome.Experimental Design: Phase I patients received carboplatin (AUC of 5-6, every 21 days), with escalating doses (50-20 mg) of oral twice-daily (BID) veliparib. In a companion phase II trial, patients received single-agent veliparib (400 mg BID), and upon progression, received the combination at MTD. Peripheral blood mononuclear cell PAR and serum veliparib levels were assessed and correlated with outcome.Results: Twenty-seven phase I trial patients were evaluable. Dose-limiting toxicities were nausea, dehydration, and thrombocytopenia [MTD: veliparib 150 mg po BID and carboplatin (AUC of 5)]. Response rate (RR) was 56%; 3 patients remain in complete response (CR) beyond 3 years. Progression-free survival (PFS) and overall survival (OS) were 8.7 and 18.8 months. The PFS and OS were 5.2 and 14.5 months in the 44 patients in the phase II trial, with a 14% RR in BRCA1 (n = 22) and 36% in BRCA2 (n = 22). One of 30 patients responded to the combination therapy after progression on veliparib. Higher baseline PAR was associated with clinical benefit.Conclusions: Safety and efficacy are encouraging with veliparib alone and in combination with carboplatin in BRCA-associated MBC. Lasting CRs were observed when the combination was administered first in the phase I trial. Further investigation of PAR level association with clinical outcomes is warranted. Clin Cancer Res; 23(15); 4066-76. ©2017 AACR.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Benzimidazoles/administration & dosage , Breast Neoplasms/drug therapy , Carboplatin/administration & dosage , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzimidazoles/adverse effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , California , Carboplatin/adverse effects , Combined Modality Therapy , Disease-Free Survival , Female , Germ-Line Mutation , Humans , Middle Aged , Neoplasm Metastasis , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects
11.
Semin Oncol ; 43(4): 484-91, 2016 08.
Article in English | MEDLINE | ID: mdl-27663480

ABSTRACT

Robust pharmacodynamic assay results are valuable for informing go/no-go decisions about continued development of new anti-cancer agents and for identifying combinations of targeted agents, but often pharmacodynamic results are too incomplete or variable to fulfill this role. Our experience suggests that variable reagent and specimen quality are two major contributors to this problem. Minimizing all potential sources of variability in procedures for specimen collection, processing, and assay measurements is essential for meaningful comparison of pharmacodynamic biomarkers across sample time points. This is especially true in the evaluation of pre- and post-dose tumor biopsies, which suffer from high levels of tumor insufficiency due to variations in biopsy collection techniques and significant specimen heterogeneity within and across patients. Developing methods to assess heterogeneous biopsies is necessary in order to evaluate a majority of tumor biopsies collected for pharmacodynamic biomarker studies. Improved collection devices and standardization of methods are being sought in order to improve the tumor content and quality of tumor biopsies. In terms of reagent variability, we have found that stringent initial reagent qualification and quality control of R&D-grade reagents is critical to minimize lot-to-lot variability and prevent assay failures, especially for clinical pharmacodynamic questions, which often demand assay performance that meets or exceeds clinical diagnostic assay standards. Rigorous reagent specifications and use of appropriate assay quality control methodologies help to ensure consistency between assay runs, laboratories and trials to provide much needed pharmacodynamic insights into the activity of investigational agents.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Biomarkers, Tumor/analysis , Specimen Handling/methods , Biopsy , Humans , Indicators and Reagents , Neoplasms/pathology , Reproducibility of Results , Specimen Handling/standards
12.
Semin Oncol ; 43(4): 492-500, 2016 08.
Article in English | MEDLINE | ID: mdl-27663481

ABSTRACT

Clinical pharmacodynamic assays need to meet higher criteria for sensitivity, precision, robustness, and reproducibility than those expected for research-grade assays because of the long duration of clinical trials and the potentially unpredictable number of laboratories running the assays. This report describes the process of making an immunoassay based on commercially available reagents "clinically ready". The assay was developed to quantify poly(ADP-ribose) (PAR) levels as a marker of PAR polymerase inhibitor activity for a proof-of-concept phase 0 clinical trial at the National Cancer Institute (NCI) and subsequent clinical trials. In this publication, we retrospectively examine the measures taken to validate the published PAR immunoassay and outline key lessons learned during the development and implementation of these procedures at both internal and external clinical trial sites; these measures included optimizing PAR measurements in tumor biopsies and peripheral blood mononuclear cells (PBMCs), reagent qualification, analytical validation and assay quality control, instrument qualification and method quality control, and support for external laboratories.


Subject(s)
Immunoassay , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Poly(ADP-ribose) Polymerases/analysis , Animals , Biopsy/methods , Humans , Immunoassay/instrumentation , Immunoassay/methods , Immunoassay/standards , Indicators and Reagents , Laboratories , Luminescence , Mice , National Cancer Institute (U.S.) , Neoplasms/drug therapy , Quality Control , Reproducibility of Results , United States , Xenograft Model Antitumor Assays
13.
Clin Cancer Res ; 22(13): 3227-37, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26842236

ABSTRACT

PURPOSE: PARP is essential for recognition and repair of DNA damage. In preclinical models, PARP inhibitors modulate topoisomerase I inhibitor-mediated DNA damage. This phase I study determined the MTD, dose-limiting toxicities (DLT), pharmacokinetics (PK), and pharmacodynamics (PD) of veliparib, an orally bioavailable PARP1/2 inhibitor, in combination with irinotecan. EXPERIMENTAL DESIGN: Patients with advanced solid tumors were treated with 100 mg/m(2) irinotecan on days 1 and 8 of a 21-day cycle. Twice-daily oral dosing of veliparib (10-50 mg) occurred on days 3 to 14 (cycle 1) and days -1 to 14 (subsequent cycles) followed by a 6-day rest. PK studies were conducted with both agents alone and in combination. Paired tumor biopsies were obtained after irinotecan alone and veliparib/irinotecan to evaluate PARP1/2 inhibition and explore DNA damage signals (nuclear γ-H2AX and pNBS1). RESULTS: Thirty-five patients were treated. DLTs included fatigue, diarrhea, febrile neutropenia, and neutropenia. The MTD was 100 mg/m(2) irinotecan (days 1 and 8) combined with veliparib 40 mg twice daily (days -1-14) on a 21-day cycle. Of 31 response-evaluable patients, there were six (19%) partial responses. Veliparib exhibited linear PK, and there were no apparent PK interactions between veliparib and irinotecan. At all dose levels, veliparib reduced tumor poly(ADP-ribose) (PAR) content in the presence of irinotecan. Several samples showed increases in γ-H2AX and pNBS1 after veliparib/irinotecan compared with irinotecan alone. CONCLUSIONS: Veliparib can be safely combined with irinotecan at doses that inhibit PARP catalytic activity. Preliminary antitumor activity justifies further evaluation of the combination. Clin Cancer Res; 22(13); 3227-37. ©2016 AACR.


Subject(s)
Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Camptothecin/analogs & derivatives , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles/adverse effects , Camptothecin/adverse effects , Camptothecin/pharmacokinetics , Camptothecin/therapeutic use , Cell Cycle Proteins/metabolism , DNA Repair/genetics , Female , Histones/metabolism , Humans , Irinotecan , Male , Middle Aged , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerases/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...