Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 67(3): 420-33, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21481027

ABSTRACT

DNA double-strand breaks (DSBs) pose one of the most severe threats to genome integrity, potentially leading to cell death. After detection of a DSB, the DNA damage and repair response is initiated and the DSB is repaired by non-homologous end joining and/or homologous recombination. Many components of these processes are still unknown in Arabidopsis thaliana. In this work, we characterized γ-irradiation and mitomycin C induced 1 (GMI1), a member of the SMC-hinge domain-containing protein family. RT-PCR analysis and promoter-GUS fusion studies showed that γ-irradiation, the radio-mimetic drug bleocin, and the DNA cross-linking agent mitomycin C strongly enhance GMI1 expression particularly in meristematic tissues. The induction of GMI1 by γ-irradiation depends on the signalling kinase Ataxia telangiectasia-mutated (ATM) but not on ATM and Rad3-related (ATR). Epistasis analysis of single and double mutants demonstrated that ATM acts upstream of GMI1 while the atr gmi1-2 double mutant was more sensitive than the respective single mutants. Comet assay revealed a reduced rate of DNA double-strand break repair in gmi1 mutants during the early recovery phase after exposure to bleocin. Moreover, the rate of homologous recombination of a reporter construct was strongly reduced in gmi1 mutant plants upon exposure to bleocin or mitomycin C. GMI1 is the first member of its protein family known to be involved in DNA repair.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chromosomes, Plant/metabolism , DNA, Plant/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Cloning, Molecular , Comet Assay , DNA Breaks, Double-Stranded , DNA Repair , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Plant/genetics , Flowers/drug effects , Flowers/metabolism , Flowers/radiation effects , Gene Expression Regulation, Plant , Gene Fusion , Meristem/drug effects , Meristem/metabolism , Meristem/radiation effects , Microarray Analysis , Mitomycin/pharmacology , Mutagenesis, Insertional , Recombination, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/drug effects , Seedlings/genetics , Transcription, Genetic
2.
Cell ; 120(6): 789-801, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15797380

ABSTRACT

Meiotic cohesin serves in sister chromatid linkage and DNA repair until its subunit Rec8 is cleaved by separase. Separase is activated when its inhibitor, securin, is polyubiquitinated by the Cdc20 regulated anaphase-promoting complex (APC(Cdc20)) and consequently degraded. Differently regulated APCs (APC(Cdh1), APC(Ama1)) have not been implicated in securin degradation at meiosis I. We show that Mnd2, a factor known to associate with APC components, prevents premature securin degradation in meiosis by APC(Ama1). mnd2Delta cells lack linear chromosome axes and exhibit precocious sister chromatid separation, but deletion of AMA1 suppresses these defects. Besides securin, Sgo1, a protein essential for protection of centromeric cohesion during anaphase I, is also destabilized in mnd2delta cells. Mnd2's disappearance prior to anaphase II may activate APC(Ama1). Human oocytes may spend many years in meiotic prophase before maturation. Inhibitors of meiotic APC variants could prevent loss of chiasmata also in these cells, thereby guarding against aberrant chromosome segregation.


Subject(s)
Cell Cycle/physiology , Chromosome Segregation/physiology , Meiosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase-Promoting Complex-Cyclosome , Cdc20 Proteins , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatids/genetics , Chromatids/metabolism , Chromosomal Proteins, Non-Histone , Chromosome Segregation/genetics , Endopeptidases , Fungal Proteins , Gelatinases/genetics , Gelatinases/metabolism , Meiosis/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Denaturation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Securin , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...