Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(22): 10221-10227, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37935022

ABSTRACT

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the ex situ functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal. Here we show that the incorporation of oxygen vacancies into polyoxovanadate-alkoxide clusters improves hole transfer kinetics by promoting surface interactions between the metal oxide assembly and the QD. Investigating the reactivity of oxygen-deficient clusters with phosphonate-capped QDs reveals reversible complexation of the POV-alkoxide with a phosphonate ligand at the nanocrystal surface. These findings reveal a new method of facilitating QD-hole acceptor association that bypasses the restrictions of exchange interactions.

2.
Inorg Chem ; 62(5): 1958-1967, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36049052

ABSTRACT

Here, we evaluate the efficacy of multiple methods for elucidating the average bond dissociation free energy (BDFE) of two surface hydroxide moieties in a reduced polyoxovanadate cluster, [V6O11(OH)2(TRIOLNO2)2]-2. Through cyclic voltammetry, individual thermochemical parameters describing proton coupled electron transfer (PCET) are obtained, without the need for synthetic isolation of intermediates. Further, we demonstrate that a method involving a series of open circuit potential measurements with varying ratios of reduced to oxidized clusters is most attractive for the direct measurement of BDFE(O-H) for polyoxovanadate clusters as this approach also determines the stoichiometry of PCET. We subsequently connect the driving force of PCET to the rate constant for the transfer of hydrogen atoms to a series of organic substrates through the Marcus cross relation. We show that this method is applicable for the prediction of reaction rates for multielectron/multiproton transfer reactions, extending the findings from previous work focused on single electron/proton reactions.

3.
Chem Sci ; 13(43): 12726-12737, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36519047

ABSTRACT

Hydrogen-atom (H-atom) transfer at the surface of heterogeneous metal oxides has received significant attention owing to its relevance in energy conversion and storage processes. Here, we present the synthesis and characterization of an organofunctionalized polyoxovanadate cluster, (calix)V6O5(OH2)(OMe)8 (calix = 4-tert-butylcalix[4]arene). Through a series of equilibrium studies, we establish the BDFE(O-H)avg of the aquo ligand as 62.4 ± 0.2 kcal mol-1, indicating substantial bond weaking of water upon coordination to the cluster surface. Subsequent kinetic isotope effect studies and Eyring analysis indicate the mechanism by which the hydrogenation of organic substrates occurs proceeds through a concerted proton-electron transfer from the aquo ligand. Atomistic resolution of surface reactivity presents a novel route of hydrogenation reactivity from metal oxide surfaces through H-atom transfer from surface-bound water molecules.

4.
Chem Commun (Camb) ; 58(40): 6004-6007, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35485443

ABSTRACT

We report accelerated rates of oxygen-atom transfer from a polyoxovanadate-alkoxide cluster following functionalization with a 4-tertbutylcalix[4]arene ligand. Incorporation of this electron withdrawing ligand modifies the electronics of the metal oxide core, favoring a mechanism in which the rate of oxygen-atom transfer is limited by outer-sphere electron transfer.


Subject(s)
Electrons , Oxygen , Electron Transport , Ligands , Oxides
5.
J Am Chem Soc ; 144(11): 5029-5041, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35275632

ABSTRACT

The uptake of hydrogen atoms (H-atoms) into reducible metal oxides has implications in catalysis and energy storage. However, outside of computational modeling, it is difficult to obtain insight into the physicochemical factors that govern H-atom uptake at the atomic level. Here, we describe oxygen-atom vacancy formation in a series of hexavanadate assemblies via proton-coupled electron transfer, presenting a novel pathway for the formation of defect sites at the surface of redox-active metal oxides. Kinetic investigations reveal that H-atom transfer to the metal oxide surface occurs through concerted proton-electron transfer, resulting in the formation of a transient VIII-OH2 moiety that, upon displacement of the water ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide cluster. Oxidation state distribution of the cluster core dictates the affinity of surface oxido ligands for H-atoms, mirroring the behavior of reducible metal oxide nanocrystals. Ultimately, atomistic insights from this work provide new design criteria for predictive proton-coupled electron-transfer reactivity of terminal M═O moieties at the surface of nanoscopic metal oxides.


Subject(s)
Oxygen , Protons , Electron Transport , Electrons , Hydrogen/chemistry , Ligands , Oxides/chemistry , Oxygen/chemistry
6.
J Am Chem Soc ; 143(38): 15756-15768, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34528799

ABSTRACT

The concerted transfer of protons and electrons enables the activation of small-molecule substrates by bypassing energetically costly intermediates. Here, we present the synthesis and characterization of several hydrogenated forms of an organofunctionalized vanadium oxide assembly, [V6O13(TRIOLNO2)2]2-, and their ability to facilitate the concerted transfer of protons and electrons to O2. Electrochemical analysis reveals that the fully reduced cluster is capable of mediating 2e-/2H+ transfer reactions from surface hydroxide ligands, with an average bond dissociation free energy (BDFE) of 61.6 kcal/mol. Complementary stoichiometric experiments with hydrogen-atom-accepting reagents of established bond strengths confirm that the electrochemically established BDFE predicts the 2H+/2e- transfer reactivity of the assembly. Finally, the reactivity of the reduced polyoxovanadate toward O2 reduction is summarized; our results indicate a stepwise reduction of the substrate, proceeding through H2O2 en route to the formation of H2O. Kinetic isotope effect experiments confirm the participation of hydrogen transfer in the rate-determining step of both the reduction of O2 and H2O2. This work constitutes the first example of hydrogen atom transfer for small-molecule activation with reduced polyoxometalates, where both electron and proton originate from the cluster.

7.
Nanoscale ; 13(12): 6162-6173, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33734254

ABSTRACT

We report a rare example of the direct alkylation of the surface of a plenary polyoxometalate cluster by leveraging the increased nucleophilicity of vanadium oxide assemblies. Addition of methyl trifluoromethylsulfonate (MeOTf) to the parent polyoxovanadate cluster, [V6O13(TRIOLR)2]2- (TRIOL = tris(hydroxymethyl)methane; R = Me, NO2) results in functionalisation of one or two bridging oxide ligands of the cluster core to generate [V6O12(OMe)(TRIOLR)2]1- and [V6O11(OMe)2(TRIOLR)2]2-, respectively. Comparison of the electronic absorption spectra of the functionalised and unfunctionalised derivatives indicates the decreased overall charge of the complex results in a decrease in the energy required for ligand to metal charge transfer events to occur, while simultaneously mitigating the inductive effects imposed by the capping TRIOL ligand. Electrochemical analysis of the family of organofunctionalised polyoxovanadate clusters reveals the relationship of ligand environment and the redox properties of the cluster core: increased organofunctionalisation of the surface of the vanadium oxide assembly translates to anodic shifts in the reduction events of the Lindqvist ion. Overall, this work provides insight into the electronic effects induced upon atomically precise modifications to the surface structure of nanoscopic, redox-active metal oxide assemblies.

8.
Chem Commun (Camb) ; 56(62): 8762-8765, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32628236

ABSTRACT

We report the improvement of photocatalytic proton reduction using molecular polyoxovanadate-alkoxide clusters as hole scavengers for CdSe quantum dots. The increased hydrogen production is explained by favorable charge interactions between reduced forms of the cluster and the charge on the quantum dots arising from the capping ligands.

9.
Inorg Chem ; 58(16): 10462-10471, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-30938519

ABSTRACT

In this manuscript, we further investigate the use of Lindqvist polyoxovanadate alkoxide (POV-alkoxide) clusters as homogeneous molecular models of reducible metal oxides (RMO), focusing on the structural and electronic consequences of forming one or two oxygen-deficient sites. We demonstrate the reactivity of a neutral POV-alkoxide cluster, [V6O7(OCH3)12]0, with a reductant, revealing routes for controlling metal-to-oxygen ratios in self-assembled polynuclear ensembles through post-synthetic modification. The outlook of this science is bolstered by the fact that, in both cases, O-atom removal reveals reduced V ions at the surface of the cluster. Extending our entry into small-molecule activation mediated by surface defect sites, we report the reactivity of mono- and divacant clusters with a model substrate, tert-butyl isocyanide, demonstrating the electronic consequences of small-molecule coordination to reduced ions in RMO materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...