Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 188, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28775280

ABSTRACT

Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform 1H and 19F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 1012 19F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration.Nitrogen vacancy (NV) centres in diamond can be used for NMR spectroscopy, but increased sensitivity is needed to avoid long measurement times. Kehayias et al. present a nanostructured diamond grating with a high density of NV centres, enabling NMR spectroscopy of picoliter-volume solutions.


Subject(s)
Diamond , Magnetic Resonance Spectroscopy , Nanostructures
2.
Opt Express ; 21(13): 15121-30, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842299

ABSTRACT

We report on a study of polarization-modulation experiments on the 4 → 3 hyperfine component of the D1 transition in Cs vapor contained in a paraffin-coated cell. The laser beam's polarization was switched between left- and right-circular polarization at a rate of 200 Hz. Variations of the transmitted light power were recorded while varying the amplitude of a transverse magnetic field. The power shows electromagnetically induced transparency (EIT) resonances when the atomic Larmor frequency matches a harmonic of the modulation frequency. We made a quantitative study of the resonance amplitudes with square-wave modulations of various duty cycles, and find an excellent agreement with recent algebraic model predictions.

3.
Opt Express ; 20(17): 19185-93, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-23038559

ABSTRACT

Frequency stabilization of a diode laser locked to a whispering gallery mode (WGM) reference resonator made of a MgF2 single crystal is demonstrated. The strong thermal dependence of the difference frequency between two orthogonally polarized TE an TM modes (dual-mode frequency) of the optically anisotropic crystal material allows sensitive measurement of the resonator's temperature within the optical mode volume. This dual-mode signal was used as feedback for self-referenced temperature stabilization to nanokelvin precision, resulting in frequency stability of 0.3 MHz/h at 972 nm, which was measured by comparing with an independent ultrastable laser.


Subject(s)
Lasers, Semiconductor , Pattern Recognition, Automated/methods , Surface Plasmon Resonance/instrumentation , Thermography/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...