Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Immunopathol Pharmacol ; 35: 20587384211005645, 2021.
Article in English | MEDLINE | ID: mdl-33779346

ABSTRACT

Protective effects of peroxiredoxin 6 (PRDX6) in RIN-m5F ß-cells and of thymulin in mice with alloxan-induced diabetes were recently reported. The present work was aimed at studying the efficiency of thymulin and PRDX6 in a type 1 diabetes mellitus model induced by streptozotocin in mice. Effects of prolonged treatment with PRDX6 or thymic peptide thymulin on diabetes development were evaluated. We assessed the effects of the drugs on the physiological status of diabetic mice by measuring blood glucose, body weight, and cell counts in several organs, as well as effects of thymulin and PRDX6 on the immune status of diabetic mice measuring concentrations of pro-inflammatory cytokines in blood plasma (TNF-α, interleukin-5 and 17, and interferon-γ), activity of NF-κB and JNK pathways, and Hsp90α expression in immune cells. Both thymulin and PRDX6 reduced the physiological impairments in diabetic mice at various levels. Thymulin and PRDX6 provide beneficial effects in the model of diabetes via very different mechanisms. Taken together, the results of our study indicated that the thymic peptide and the antioxidant enzyme have anti-inflammatory functions. As increasing evidences show diabetes mellitus as a distinct comorbidity leading to acute respiratory distress syndrome and increased mortality in patients with COVID-19 having cytokine storm, thymulin, and PRDX6 might serve as a supporting anti-inflammatory treatment in the therapy of COVID 19 in diabetic patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , MAP Kinase Kinase 4/metabolism , NF-kappa B/metabolism , Peroxiredoxin VI , Signal Transduction , Thymic Factor, Circulating , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , COVID-19/immunology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/immunology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Drug Discovery , Interferon-gamma/blood , Interleukins/blood , Mice , Peroxiredoxin VI/metabolism , Peroxiredoxin VI/pharmacology , SARS-CoV-2 , Signal Transduction/drug effects , Signal Transduction/immunology , Thymic Factor, Circulating/metabolism , Thymic Factor, Circulating/pharmacology , Tumor Necrosis Factor-alpha/blood
2.
J Diabetes Res ; 2020: 7523892, 2020.
Article in English | MEDLINE | ID: mdl-32908936

ABSTRACT

Type 1 diabetes is associated with the destruction of pancreatic beta cells, which is mediated via an autoimmune mechanism and consequent inflammatory processes. In this article, we describe a beneficial effect of peroxiredoxin 6 (PRDX6) in a type 1 diabetes mouse model. The main idea of this study was based on the well-known data that oxidative stress plays an important role in pathogenesis of diabetes and its associated complications. We hypothesised that PRDX6, which is well known for its various biological functions, including antioxidant activity, may provide an antidiabetic effect. It was shown that PRDX6 prevented hyperglycemia, lowered the mortality rate, restored the plasma cytokine profile, reversed the splenic cell apoptosis, and reduced the ß cell destruction in Langerhans islets in mice with a severe form of alloxan-induced diabetes. In addition, PRDX6 protected rat insulinoma RIN-m5F ß cells, cultured with TNF-α and IL-1ß, against the cytokine-induced cytotoxicity and reduced the apoptotic cell death and production of ROS. Signal transduction studies showed that PRDX6 prevented the activation of NF-κB and c-Jun N-terminal kinase signaling cascades in RIN-m5F ß cells cultured with cytokines. In conclusion, there is a prospect for therapeutic application of PRDX6 to delay or even prevent ß cell apoptosis in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Insulin-Secreting Cells/drug effects , Peroxiredoxin VI/therapeutic use , Animals , Apoptosis/drug effects , Blood Glucose , Cytokines/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 1/blood , Male , Mice , Oxidative Stress/drug effects , Pancreas/drug effects , Peroxiredoxin VI/pharmacology , Reactive Oxygen Species/metabolism
3.
Electromagn Biol Med ; 38(1): 74-83, 2019.
Article in English | MEDLINE | ID: mdl-30472894

ABSTRACT

We investigated the effects of weak combined magnetic fields (MFs) produced by superimposing a constant MF (in the range 30 - 150 µT) and an alternating MF (100 or 200 nT) on cytokine production in healthy Balb/C male mice exposed 2 h daily for 14 days. The alternating magnetic field was a sum of several frequencies (ranging from 2.5 - 17.5 Hz). The frequencies of the alternating magnetic field were calculated formally based on the cyclotron resonance of ions of free amino acids (glutamic and aspartic acids, arginine, lysine, histidine, and tyrosine). The selection of different intensity and frequency combinations of constant and alternating magnetic fields was performed to find the optimal characteristics for cytokine production stimulation in immune cells. MF with a constant component of 60 µT and an alternating component of 100 nT, which was a sum of six frequencies (from 5 to 7 Hz), was found to stimulate the production of tumor necrosis factor-α, interferon-gamma, interleukin-2, and interleukin-3 in healthy mouse cells and induce cytokine accumulation in blood plasma. Then, we studied the effect of this MF on tumor-bearing mice with solid tumors induced by Ehrlich ascite carcinoma cells by observing tumor development processes, including tumor size, mouse survival rate, and average lifespan. Tumor-bearing mice exposed to a combined constant magnetic field of 60 µT and an alternating magnetic field of 100 nT containing six frequencies showed a strong suppression of tumor growth with an increase in survival rate and enhancement of average lifespan.


Subject(s)
Carcinogenesis , Cytokines/biosynthesis , Magnetic Fields , Animals , Cytokines/blood , Cytokines/metabolism , Male , Mice , Mice, Inbred BALB C , Tumor Burden
4.
PLoS One ; 13(5): e0197601, 2018.
Article in English | MEDLINE | ID: mdl-29795607

ABSTRACT

In the present work, we aimed to study the effects of free and polybutylcyanoacrylate nanoparticle-bound thymulin on immune cell activity in mice with chronic inflammation. NF-κB, MAPK, and PKC-θ signaling pathway activity was assessed, alongside Hsp72, Hsp90-α, and TLR4 expression and levels of apoptosis. In addition, plasma cytokines and blood and brain melatonin and serotonin levels were measured. In mice treated with gradually raised doses of lipopolysaccharide, significant increases in the activity of the signaling pathways tested, heat-shock protein and TLR4 expression, lymphocyte apoptosis, and plasma proinflammatory cytokine levels were noted. Moreover, we observed significantly heightened serotonin concentrations in the plasma and especially the brains of mice with inflammation. In contrast, melatonin levels were reduced in the tissues examined, particularly so in the brain. Treatment of these mice with thymulin alleviated fever, reduced apoptosis, increased splenic cell number, and decreased cytokine production, Hsp72, Hsp90, and TLR4 expression, and the activity of the signaling pathways examined. In addition, thymulin partially restored brain and blood serotonin and melatonin levels. Thus, thymulin suppressed the proinflammatory response in LPS-treated mice, indicating the potential of thymulin co-therapy in the treatment of sepsis. Nanoparticle-bound thymulin was more effective in several respects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enbucrilate , Nanoparticles , Thymic Factor, Circulating/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Apoptosis , Biomarkers , Body Temperature , Brain/metabolism , Cytokines/blood , Disease Models, Animal , Enbucrilate/chemistry , Gene Expression , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Male , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Sepsis/blood , Sepsis/drug therapy , Sepsis/etiology , Sepsis/metabolism , Signal Transduction , Spleen/cytology , Thymic Factor, Circulating/chemistry
5.
Int J Immunopathol Pharmacol ; 30(1): 58-69, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28281875

ABSTRACT

Thymic peptides are immune regulators produced mainly in the thymus. However, thymic peptides such as thymosin-α and thymopoietin have precursors widely expressed outside the thymus, localized in cell nuclei, and involved in vital nuclear functions. In stress-related conditions, they can relocalize. We hypothesized that another thymic peptide, thymulin, could be similarly produced by non-thymic cells during stress and have a precursor therein. Non-thymic cells, including macrophages and fibroblasts, were exposed to oxidative stress, heat, apoptosis, or necrosis. Extracellular thymulin was identified in media of both cell types 2 h after exposure to stress or lethal signals. Therefore, thymulin is released by non-thymic cells. To examine possible thymulin precursors in non-thymic cells, macrophage lysates were analyzed by western blotting. Bands stained with anti-thymulin antibody were detected in two locations, approximately 60 kDa and 10 kDa, which may be a possible precursor and intermediate. All of the exposures except for heat were effective for induction of the 10 kDa protein. BLAST search using thymulin sequence identified SPATS2L, an intranucleolar stress-response protein with molecular weight of 62 kDa, containing thymulin-like sequence. Comparisons of blots stained with anti-thymulin and anti-SPATS2L antibodies indicate that SPATS2L may be a possible candidate for the precursor of thymulin.


Subject(s)
Fibroblasts/metabolism , Macrophages/metabolism , Thymic Factor, Circulating/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Cell Line , HSP72 Heat-Shock Proteins/metabolism , Hot Temperature , Mice , Necrosis , Oxidative Stress , RAW 264.7 Cells
6.
Bioelectromagnetics ; 38(1): 11-21, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27571392

ABSTRACT

Due to shallow penetration of millimeter waves (MMW) and convection in liquid medium surrounding cells, the problem of accurate assessment of local MMW heating in in vitro experiments remains unsolved. Conventional dosimetric MMW techniques, such as infrared imaging or fiber optic (FO) sensors, face several inherent limits. Here we propose a methodology for accurate local temperature measurement and subsequent specific absorption rate (SAR) retrieval using microscale thermocouples (TC). SAR was retrieved by fitting the measured initial temperature rise to the numerical solution of an equivalent thermal model. It was found that the accuracy of temperature measurement depends on thermosensor size, that is, the smaller TC, the more accurate the temperature measurement. SAR determined using TC with lead diameters of 25 and 75 µm demonstrated 98.5% and 80.4% match with computed SAR, respectively. However, both TC provided the same temperature rises in long run (> 10 min). FO probe failed to measure adequately local heating both for short and long exposures due to the relatively large size of the probe sensor (400 µm) and time constant (0.6 s). Calculated SAR in the cell monolayer was almost two times lower than that in the surrounding liquid. It was shown that the impact of the cell monolayer on heating due to its small thickness (5 to 10 µm) can be considered as negligible. Moreover, we demonstrated the possibility of accurate measurement of MMW-induced thermal pulses (up to 10 °C) using 25 µm TC. Bioelectromagnetics. 38:11-21, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Absorption, Radiation , Cells/radiation effects , Models, Biological , Radio Waves , Temperature , Humans
7.
Int Immunopharmacol ; 31: 24-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26690976

ABSTRACT

The aim of this study was to compare immune imbalances in "pre-diabetic" and diabetic mice and to evaluate the efficacy of several agents in improving the immunity of mice with type 1 diabetes. Pre-diabetic and diabetic models generated by a single or double alloxan injection were monitored for plasma glucose and pancreas immunohistochemistry. To study the immunity in pre-diabetic and diabetic Balb/C male mice; the levels of cytokines; synthesis of inducible heat shock proteins HSP72 and HSP90α; activity of the NF-κB, IFR3, SAPK/JNK, and TLR4 pathways; and apoptosis levels in thymuses were measured. Pre-diabetes resulted in a decrease in IL-4, IL-5 and IL-10 in plasma; in diabetic mice, plasma IFN-gamma, IL-6, TNF-alpha, and IL-10 were decreased. The NF-κB alternative pathway activity and TLR4 expression were significantly increased only in pre-diabetic mice, whereas SAPK/JNK activation was observed at both stages of diabetes. Other measured parameters also showed distinct altered patterns in the immunity of pre-diabetic and diabetic mice. Treatment with an inhibitor of NF-κB, thymulin, or a diet with an antioxidant improved or normalized the immune balance in diabetic mice and also notably decreased pancreatic cell damage in pre-diabetic mice.


Subject(s)
Antioxidants/administration & dosage , Diabetes Mellitus, Type 1/drug therapy , Insulin-Secreting Cells/drug effects , Thymic Factor, Circulating/administration & dosage , Alloxan/administration & dosage , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cytokines/metabolism , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/immunology , Humans , Insulin-Secreting Cells/physiology , Male , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 8/metabolism , NF-kappa B/antagonists & inhibitors , Signal Transduction/drug effects , Stress, Physiological/drug effects , Thymic Factor, Circulating/pharmacology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
8.
Bioelectromagnetics ; 36(6): 464-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26179286

ABSTRACT

This study demonstrates that 20-100 GHz range can be used for spatially-accurate focusing of heating inside the skin achieved by varying frequency and exposure beam size, as well as by enforcing air convection. The latter is also used to reduce overheating of skin surface. Heating at different skin depths depending on these parameters is investigated in detail using the hybrid bio-heat equation. In particular, it is shown that decreasing frequency and/or increasing exposure beam size at forced airflow result in elevation of heating of deeper layers of tissue and decrease of skin surface temperature. Changes of water content within 15%, which exceed those due to aging and presence of tumors, only slightly affect heating. Exposure intensity necessary to reach a target temperature significantly increases in different areas of body with elevated blood flow. Dependence on exposure intensity and hyperthermia treatment duration is also investigated and discussed. Results of this study suggest that the lower part of the millimeter-wave range is an attractive alternative for non-invasive thermal treatment of skin cancer with a high spatial resolution.


Subject(s)
Hot Temperature , Hyperthermia, Induced/methods , Microwaves/therapeutic use , Skin/radiation effects , Air , Blood Circulation/radiation effects , Dose-Response Relationship, Radiation , Humans , Kinetics , Melanoma/blood supply , Melanoma/metabolism , Melanoma/therapy , Models, Biological , Skin/blood supply , Skin/metabolism , Skin Neoplasms/blood supply , Skin Neoplasms/metabolism , Skin Neoplasms/therapy , Water/metabolism
9.
J Biomol Struct Dyn ; 32(11): 1793-801, 2014.
Article in English | MEDLINE | ID: mdl-24024467

ABSTRACT

We propose a hypothesis that the T-cell receptor is a possible target of thymic hormones. We modelled the conformational dynamics of thymopentin and its structural variants in solution, as well as the interactions of these short peptides with the proposed molecular target. Thymopentin is a five-amino-acid fragment of the thymic hormone thymopoietin (residues 32 to 36) that reproduces the immunomodulatory activity of the complete hormone. Using molecular dynamics and flexible docking methods, we demonstrated high-affinity binding of thymopentin and its prospective mimetics with the T-cell receptor. The calculated biological activity spectra of thymopentin and its two promising modifications can be used in immunomodulatory activity screenings with live systems.


Subject(s)
Oligopeptides/chemistry , Thymopoietins/chemistry , Humans , Immunologic Factors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Mimicry
10.
Expert Opin Ther Targets ; 15(12): 1337-46, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22148922

ABSTRACT

OBJECTIVES: The aim of this study was to reveal T-lymphocyte-independent mechanisms of thymic peptide-mediated immunomodulation. METHODS: The effects of two thymic peptides- thymulin and thymopentin were studied in cultured RAW 264.7 macrophages (lipopolysaccharide-stimulated or unstimulated) by measuring cytokine production and signal protein levels. RESULTS: Both peptides increased proinflammatory cytokine secretion by unstimulated RAW 264.7 macrophages and these effects were blocked by the NF-κB cascade inhibitor, stress-activated protein kinase (SAPK)/JNK cascade inhibitor and, to a lesser extent, Toll-like 4 receptor activity inhibitor. In macrophages stimulated by bacterial lipopolysaccharide, peptides alone did not affect cytokine secretion, but significantly enhanced effects of each of the inhibitors. Thymopentin increased activation of both NF-κB and SAPK/JNK cascades in unstimulated macrophages, while thymulin significantly decreased activation of the SAPK/JNK but not NF-κB cascade in LPS-stimulated macrophages. Thymulin and thymopentin increased production of the heat shock protein HSP72 both in LPS-stimulated and unstimulated cells. CONCLUSIONS: Thymulin and thymopentin are effective anti-inflammatory modulators with direct actions on innate immune cells; the effects involve multiple signal cascades, including NF-κB and SAPK/JNK pathways. Since signaling cascades are now considered to be targets for new therapies, thymic peptides may be prospective modulators of signaling cascades, acting alone or in combination with other agents.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , Thymic Factor, Circulating/pharmacology , Thymopentin/pharmacology , Animals , Anthracenes/pharmacology , Cell Line, Tumor , Cytokines/immunology , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/metabolism , Immunomodulation , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/immunology , Macrophages/metabolism , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors
11.
IEEE Trans Biomed Eng ; 57(10): 2517-24, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20595082

ABSTRACT

Earlier publications demonstrated that 0.9 GHz microwave exposure induced notable changes of the conductivity of modified bilayer lipid membranes (BLM) formed in holes in thin Teflon film (TF). The aims of this study were: 1) to perform detailed calculations of the microwave field distributions in holes formed in TF, using the finite-difference time-domain technique and 2) to model microwave heating of the hole under the conditions used in the BLM experiments but in the absence of BLM in the hole. We found that with the E-field oriented perpendicular to the TF plane the local-specific absorption rate in holes increased significantly. The increase became larger with increasing electrolyte concentration and with decreasing diameter of the hole and frequency. The calculated temperature elevations in the hole were in good agreement with those determined experimentally. These findings allowed us to conclude that the microwave effects on BLM conductivity reported previously resulted mostly from the enhanced absorption of microwave energy by the membrane-forming holes and subsequent local temperature elevation in the holes.


Subject(s)
Microwaves , Polytetrafluoroethylene/chemistry , Absorption , Electromagnetic Fields , Lipid Bilayers/radiation effects , Models, Biological , Surface Properties , Temperature
12.
Eur J Pharmacol ; 615(1-3): 234-40, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19463810

ABSTRACT

The effects of mixed dietary coenzyme Q(9), alpha-tocopherol, and beta-carotene on immune cell activity and blood cytokine profile were studied in peritoneal macrophages, spleen lymphocytes, and blood plasma from mice with acute inflammation induced by lipopolysaccharide (LPS). The activity of each fat-soluble antioxidant was also investigated separately in several model systems, both in vivo and in vitro. NMRI male mice were fed a diet supplemented with fat-soluble antioxidants for 15 days prior to LPS injection. LPS-induced inflammation resulted in induction of cellular production of pro-inflammatory cytokines such as TNF-alpha, IL-1alpha, IL-1beta, IL-2, IL-6, IFN-gamma, and also IL-10, an anti-inflammatory cytokine, and subsequent accumulation of these cytokines in blood plasma. In animals fed the antioxidant-rich diet, the inflammatory response to LPS injection was significantly reduced. The production of anti-inflammatory cytokine IL-10 in response to toxic stress and its accumulation in plasma were not modified by the diet. In addition, the expression of the inducible form of heat-shock protein 70 in mice treated with endotoxin was reduced in the animals pretreated with the antioxidant-rich diet. We showed that the diet suppressed phosphorylation of NF-kappaB, I kappaB kinase and SAPK/JNK proteins, thereby preventing the activation of the NF-kappaB kinase and SAPK/JNK signaling pathways in LPS-treated mice. In this report we demonstrate the potential effectiveness of naturally occurring antioxidant nutrients in the reduction of the inflammatory response. Therefore, it may be possible to develop novel therapeutic combinations, containing coenzyme Q(9), alpha-tocopherol, and beta-carotene, which promote immune stimulation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dietary Supplements , Ubiquinone/analogs & derivatives , alpha-Tocopherol/pharmacology , beta Carotene/pharmacology , Animals , Cytokines/biosynthesis , Cytokines/metabolism , HSP70 Heat-Shock Proteins/metabolism , Immunologic Factors/metabolism , In Vitro Techniques , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred Strains , NF-kappa B/metabolism , Nitric Oxide/metabolism , Phosphorylation , Signal Transduction/drug effects , Ubiquinone/pharmacology
13.
Bioelectromagnetics ; 30(5): 343-51, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19267367

ABSTRACT

It has been shown that the ultralow-frequency extremely weak alternating component of combined magnetic fields (MFs) exhibits a marked antitumor activity. The parameters of this component have been found (frequency 1, 4.4, 16.5 Hz or the sum of these frequencies; intensity 300, 100, 150-300 nT, respectively) at which this MF in combination with a collinear static MF of 42 microT inhibits or suppresses the growth of Ehrlich ascites carcinoma (EAC) in mice. It was shown that the exposure of mice with EAC to combined MFs causes structural changes in some organs (liver, adrenal glands), which are probably due to the total degradation of the tumor tissue. In mice with transplanted EAC, the tumor tissue after exposure to weak MFs was practically absent, as distinct from control animals in which the invasion of the tumor into the adipose tissue surrounding the kidneys, mesenteric lymph nodes, and spermatic appendages was observed. In animals without tumors, no pathological deviations from the norm in the structure of organs and tissues occurred after exposure to weak MF, indicating that this factor per se is not toxic to the organism.


Subject(s)
Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/therapy , Magnetic Field Therapy/methods , Magnetics , Animals , Magnetic Field Therapy/adverse effects , Male , Mice , Mice, Inbred BALB C , Time Factors
14.
Bioelectromagnetics ; 29(5): 387-93, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18288681

ABSTRACT

The effect of weak static (DC) and alternating (AC) magnetic fields (MFs), as well as combined (AC/DC) collinear MFs on the intensity of morphogenesis processes in the planarian Dugesia (Girardia) tigrina has been studied. It was found that combined MFs produce a stimulating effect on the fission and regeneration of planarians. Both components of the combined MFs, the direct (DC) and the alternating (AC), are important in the realization of the effects of weak MFs. The practically complete absence of one of the components (DC) reverses the sign of the effect. It was shown that the presence of concomitant background MFs does not substantially influence the effects of combined MFs with a very small AC component (100 nT). The effect of the "zero" field is significant and comparable in magnitude with the effects of combined MFs at effective frequencies. Narrow zones of effective amplitudes (in the region of tens and hundreds of nT) of the AC component of the combined MFs, with the DC component close to the value of the geomagnetic field were found, which alternate with regions where the response of the biological object to the influence is absent.


Subject(s)
Electromagnetic Fields , Magnetics , Morphogenesis/physiology , Planarians/growth & development , Planarians/radiation effects , Regeneration/physiology , Reproduction/physiology , Animals , Dose-Response Relationship, Radiation , Morphogenesis/radiation effects , Radiation Dosage , Regeneration/radiation effects , Reproduction/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...