Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Cancer ; 73(4): 642-651, 2021.
Article in English | MEDLINE | ID: mdl-32406264

ABSTRACT

There is a strong correlation between obesity and cancer. Here, we investigated the influence of IL-6 and gut microbiota of obese mice in melanoma development. We first evaluated B16F10 melanoma growth in preclinical models for obesity: mice deficient for leptin (ob/ob) or adiponectin (AdpKO) and in wild-type mice (WT, C57BL/6J) fed a high-fat diet (HFD; 60% kcal from fat) for 12 weeks. The survival rates of ob/ob and HFD-fed mice were lower than those of their respective controls. AdpKO mice also died earlier than WT control mice. We then verified the involvement of IL-6 signaling in obese mice that were inoculated with melanoma cells. Both ob/ob and AdpKO mice had higher circulating IL-6 levels than wild-type mice. Melanoma tumor volumes in IL-6 KO mice fed an HFD were reduced compared to those of WT mice subjected to the same diet. Also evaluated the effect of microbiota in tumor development. Cohousing and fecal matter transfer experiments revealed that microbiota from ob/ob mice can stimulate tumor development in lean WT mice. Taken together, our data show that in some conditions IL-6 and the gut microbiota are key mediators that link obesity and melanoma.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Animals , Diet, High-Fat/adverse effects , Interleukin-6 , Leptin , Mice , Mice, Inbred C57BL , Mice, Obese
2.
J Nutr ; 136(10): 2475-80, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16988112

ABSTRACT

The pathways of glycerol-3-P (G3P) generation were examined in retroperitoneal (RETRO) and epididymal (EPI) adipose tissues from rats fed a cafeteria diet for 3 wk. The cafeteria diet induced marked increases in body fat mass and in the plasma levels of insulin and triacylglycerol (TAG). RETRO and EPI from cafeteria diet-fed rats had increased rates of norepinephrine turnover (143 and 60%, respectively) and of de novo fatty acid (FA) synthesis (58 and 98%), compared with controls fed a balanced commercial diet. Cafeteria diet feeding induced marked increases in RETRO and EPI in vivo rates of glucose uptake (52 and 51%, respectively), used to evaluate G3P generation via glycolysis, as well as in glycerokinase activity (119 and 36%) and TAG-glycerol synthesis from glycerol (56 and 71%, respectively). In contrast, there was a marked reduction of glyceroneogenesis in RETRO and EPI from cafeteria diet-fed rats, which was evidenced by the significant decreases of P-enolpyruvate carboxykinase (PEPCK-C) activity (48 and 36%) and TAG-glycerol synthesis from pyruvate (45 and 56%, respectively). Denervation of RETRO from cafeteria diet-fed rats reduced the activity of glycerokinase by 50%, but did not affect glucose uptake or PEPCK-C activity and TAG-glycerol synthesis from pyruvate by the tissue. The data show that glyceroneogenesis can also be inhibited to adjust the supply of G3P to the existing rates of FA esterification and TAG synthesis and suggest that this adjustment is made by reciprocal changes in the generation of G3P from glucose via glycolysis and from glyceroneogenesis, independently from G3P production by glycerokinase.


Subject(s)
Adipose Tissue/innervation , Adipose Tissue/metabolism , Diet , Glucose/metabolism , Glycerol/metabolism , Sympathetic Nervous System/physiology , Animals , Body Composition , Carbon Radioisotopes , Denervation , Epididymis , Glycerol Kinase/metabolism , Glycolysis , Insulin/blood , Male , Norepinephrine/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Pyruvic Acid/metabolism , Rats , Rats, Wistar , Retroperitoneal Space , Triglycerides/metabolism
3.
Pflugers Arch ; 449(5): 463-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15688247

ABSTRACT

We have previously found that glyceroneogenesis is very active in brown adipose tissue (BAT) and increases in fasted, diabetic and high-protein-diet-fed rats, situations of reduced thermogenic activity. To understand better the role of glyceroneogenesis in BAT glycerol-3-phosphate (G3P) generation, we investigated its activity during cold exposure (10 days at 4 degrees C), a condition in which, in contrast to the above situations, BAT thermogenesis is markedly activated. Rates of total (from all sources) BAT fatty acid (FA) synthesis and rates of incorporation of glucose carbon into BAT glyceride-FA and -glycerol in vivo were markedly increased by cold exposure. Cold exposure induced a marked increase in BAT glyceroneogenic activity, evidenced by (1) increased rates of non-glucose carbon incorporation into glyceride-glycerol in vivo and of [1-14C]-pyruvate incorporation into glyceride-glycerol in vitro, and (2) a threefold increase in phosphoenolpyruvate carboxykinase activity. Most of the glyceride-glycerol synthesized by BAT via glyceroneogenesis or from glucose was used to esterify preformed FA. This use was markedly increased by cold exposure, in parallel with a pronounced activation of BAT lipoprotein lipase activity. In conclusion, during cold exposure BAT glyceroneogenesis is markedly activated, contributing to increase the generation of G3P, which is mostly used to esterify preformed FA.


Subject(s)
Adaptation, Physiological/physiology , Adipose Tissue, Brown/metabolism , Cold Temperature , Glycerol/metabolism , Animals , Carbon Radioisotopes , Fatty Acids/biosynthesis , Glycerides/biosynthesis , Lipoprotein Lipase/metabolism , Male , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Pyruvic Acid/pharmacokinetics , Rats , Rats, Wistar
4.
J Nutr ; 134(11): 2919-23, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15558854

ABSTRACT

We showed previously that rats adapted to a high-protein (70%), carbohydrate-free (HP) diet have reduced lipolytic activity. To clarify the underlying biochemical mechanisms, several metabolic processes involved in adipose tissue lipolysis were investigated. The experiments were performed in rats adapted for 15 d to an HP or a balanced diet. In agreement with previous results, microdialysis experiments showed that the concentrations of adipose tissue interstitial and arterial plasma glycerol were lower in rats adapted to the HP diet. Under nonstimulated conditions, rates of lipolysis, estimated by glycerol release to the incubation medium, were reduced in adipocytes from HP rats. Under the same conditions, there was a small, but significant (17%) reduction in the activity of hormone sensitive lipase (HSL), with no change in the content of the enzyme. Upon stimulation with isoproterenol, the percentage of the enzyme in the adipocyte cytosol translocated to the fat droplet was 20-25%in HP rats and 40-50% in rats fed the balanced diet. Adipocytes from HP diet-adapted rats had a significantly reduced response (approximately 40%) to the lipolytic action of nonspecific (norepinephrine, epinephrine, isoproterenol) and specific (CL316,243, BRL37,344, dobutamine, clenbuterol) beta-adrenergic agonists. Adipocytes from HP rats also had a reduced lipolytic response to the intracellular agents, dibutyryl cAMP (44%), forskolin (46%), and isobutyl-methylxanthine (29%). The data suggest that the main mechanism responsible for the reduced basal and stimulated lipolysis in HP diet-adapted rats is an impairment in the intracellular process of lipolysis activation, with a deficient translocation of HSL to the fat droplet.


Subject(s)
Adipocytes/metabolism , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Lipolysis/drug effects , Sterol Esterase/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Adipocytes/drug effects , Adipose Tissue/chemistry , Adrenergic beta-Agonists/pharmacology , Animals , Bucladesine/pharmacology , Colforsin/pharmacology , Glycerol/analysis , Glycerol/blood , Glycerol/metabolism , Isoproterenol/pharmacology , Male , Rats , Rats, Wistar
5.
Am J Physiol Regul Integr Comp Physiol ; 286(6): R1167-75, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15142857

ABSTRACT

White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS), and the central origins of this innervation have been demonstrated for inguinal and epididymal WAT (iWAT and eWAT, respectively) using a viral transneuronal tract tracer, the pseudorabies virus (PRV). Although the more established role of this sympathetic innervation of WAT is as a major stimulator of lipid mobilization, this innervation also inhibits WAT fat cell number (FCN); thus, local denervation of WAT leads to marked increases in WAT mass and FCN. The purpose of this study was to extend our understanding of the SNS regulation of FCN using neuroanatomical and functional analyses. Therefore, we injected PRV into retroperitoneal WAT (rWAT) to compare the SNS outflow to this pad from what already is known for iWAT and eWAT. In addition, we tested the ability of local unilateral denervation of rWAT or iWAT to promote increases in WAT mass and FCN vs. their contralateral neurally intact counterparts. Although the overall pattern of innervation was more similar than different for rWAT vs. iWAT or eWAT, its SNS outflow appeared to involve more neurons in the suprachiasmatic and solitary tract nuclei. Denervation produced significant increases in WAT mass and FCN for both iWAT and rWAT, but FCN was increased significantly more in iWAT than in rWAT. These data suggest differences in origins of the sympathetic outflow to WAT and functional differences in the WAT SNS innervation that could contribute to the differential propensity for fat cell proliferation across WAT depots in vivo.


Subject(s)
Adipocytes/physiology , Adipose Tissue/cytology , Adipose Tissue/innervation , Sympathetic Nervous System/physiology , Adipocytes/ultrastructure , Animals , Brain/cytology , Brain Stem/cytology , Cell Count , Cell Size , Cricetinae , Denervation , Herpesvirus 1, Suid , Male , Organ Size/physiology , Phodopus , Prosencephalon/cytology , Pseudorabies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...