Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38963417

ABSTRACT

Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.


Subject(s)
Anti-Bacterial Agents , Diabetic Foot , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/pathogenicity , Diabetic Foot/microbiology , Tunisia/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Male , Female , Middle Aged , Aged , Prospective Studies , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Virulence/genetics , Multilocus Sequence Typing , Adult , Virulence Factors/genetics , Drug Resistance, Multiple, Bacterial/genetics , Aged, 80 and over , Prevalence
2.
Microb Drug Resist ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722095

ABSTRACT

The study determined the prevalence, antimicrobial resistant (AMR) determinants, and genetic characteristics of Escherichia coli and Klebsiella pneumoniae isolates from patients with diabetic foot infection (DFI) in a Tunisian hospital. A total of 26 Escherichia spp. and Klebsiella spp. isolates were recovered and identified by MALDI-TOF-MS. Antimicrobial susceptibility testing, the detection of AMR determinants and Shiga-like toxin genes, phylogenetic grouping, and molecular typing were performed. Twelve E. coli, 10 K. pneumoniae, 3 K. oxytoca, and 1 E. hermanii were isolated. A multidrug-resistant phenotype was detected in 65.4% of the isolates. About 30.8% of isolates were extended-spectrum ß-lactamase (ESBL) producers and mainly carried blaCTX-M-15 and blaCTX-M-14 genes. One blaNDM-1-producing K. pneumoniae-ST1 strain was identified. Class 1 integrons were detected in 11 isolates and 5 gene cassette arrangements were noted: dfrA1+aadA1 (n = 1), dfrA12+aadA2 (n = 3), and dfrA17+aadA5 (n = 1). Other non-ß-lactam resistance genes detected were as follows (number of isolates): aac(3')-II (3), aac(6')-Ib-cr(8), qnrB (2), qnrS (4), cmlA (2), floR (4), sul1 (11), sul2 (11), and sul3 (2). The phylogroup B1 was the most frequent (41.7%) among E. coli, and two ESBL-producing isolates corresponded to the ST131-B2 lineage. The ESBL- and carbapenemase-producing Enterobacteriaceae in DFIs are described for the first time in Tunisia.

3.
Antibiotics (Basel) ; 12(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37760691

ABSTRACT

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are a global health concern. The antimicrobial resistance, virulence, and molecular typing of 57 CRPA isolated from 43 patients who attended a specific Tunisian hospital from September 2018 to July 2019 were analyzed. All but one were multidrug-resistant CRPA, and 77% were difficult-to-treat-resistant (DTR) isolates. The blaVIM-2 gene was detected in four strains (6.9%), and among the 36 blaGES-positive CRPA (62%), the blaGES-5 gene was the predominant variant (86%). Three strains co-harbored the blaVIM-2 and blaGES-45 genes, and seven CRPA carried the blaSHV-2a gene (14%). OprD alterations, including truncations by insertion sequences, were observed in 18 strains. Regarding the 46 class 1 integron-positive CRPA (81%), the blaGES-5 gene was located in integron In717, while the blaGES-29 and blaGES-45 genes were found in two new integrons (In2122 and In4879), and the blaVIM-2 gene was found in In1183 and the new integron In2142. Twenty-four PFGE patterns and thirteen sequence types (three new ones) were identified. The predominant serotype O:11 and exoU (81%) were mostly associated with ST235 and the new ST3385 clones. The seven blaSHV-2a-CRPA from different patients belonged to ST3385 and the same PFGE pattern. The blaGES-5- and blaVIM-2 + blaGES-45-positive CRPA recovered mostly from ICU patients belonged to the high-risk clone ST235. Our results highlight the alarming prevalence of blaGES-5- and ST235-CRPA, the co-existence of blaGES-45 and blaVIM-2, and their location within integrons favoring their dissemination.

4.
Microb Drug Resist ; 28(1): 18-22, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34348037

ABSTRACT

Citrobacter freundii has acquired resistance to several antimicrobial drugs, including last-resort antibiotics affecting, therefore, clinical efficacy and causing high rates of mortality. In this study, we investigate the whole genome sequence of a carbapenem-resistant C. freundii strain isolated from the hospital environment in Tunisia. A total of 210 samples were taken using sterile swabs, from inanimate surfaces, medical devices, and care staff, during the period extended between March and April 2019. After the microbiological analysis of samples and antimicrobial susceptibility testing, only one strain identified as C. freundii showing resistance to carbapenems was selected for the whole genome sequencing. The genome analysis revealed a high-level resistance to most antibiotics. Interestingly, we have noted the coexistence of blaNDM-1 and blaVIM-48 metallo-ß-lactamase (MBL) encoding genes conferring resistance to carbapenems. Other ß-lactamases encoding genes have also been detected, including blaTEM-1, blaCMY-48, and blaOXA-1. Moreover, genes conferring resistance to aminoglycoside [aac(3)-IId, ant(3″)-Ia, aadA, aac(6')-Ib], macrolide [mph(A)], sulfonamide (sul1), trimethoprim (dfrA1), tetracycline [tet(D)], chloramphenicol [cat(B3)], rifamycin (arr-3), and quinolone (qnrB) have been revealed. The multi-locus sequence typing analysis showed that this isolate could not be assigned to an existing sequence type (ST), but it is almost identical to ST22. The plasmid investigation revealed the presence of five plasmids belonging to diverse incompatibility groups (IncFII, IncHI1A, IncHI1B, IncN, and IncX3). To the best of our knowledge, our findings report the first detection of NDM-1 and VIM-48 coproducing C. freundii in Tunisia and the second detection in the world of the blaVIM-48.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Citrobacter freundii/genetics , Cross Infection/microbiology , Genes, Bacterial , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids , RNA, Long Noncoding/genetics , Whole Genome Sequencing , beta-Lactamases
5.
Antibiotics (Basel) ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348867

ABSTRACT

The growing number of multidrug resistant strains in Tunisia has become a serious health concern contributing to high rate of mortality and morbidity. Since current antibiotics are rapidly becoming ineffective, novel strategies to combat resistance are needed. Recently, we demonstrated that combination of a tetracycline antibiotic with various polyaminoisoprenyl adjuvants can sustain the life span and enhance the activity of these drugs against Pseudomonas aeruginosa reference strain (PA01). In the context of our continuing studies, the effective approach of antibiotic-adjuvant was investigated against a large panel of P. aeruginosa Tunisian clinical strains collected from the Military Hospital of Tunis. In this paper, we demonstrated that the combination of a farnesyl spermine compound 3 used at concentrations ranging from 2.5 to 10 µM, in the presence of doxycycline or minocycline leads to a significant decrease of P. aeruginosa antibiotic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...