Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36771924

ABSTRACT

In this work, we report our results on the hydrodynamic behavior of poly(2-methyl-2-oxazoline) (PMeOx). PMeOx is gaining significant attention for use as hydrophilic polymer in pharmaceutical carriers as an alternative for the commonly used poly(ethylene glycol) (PEG), for which antibodies are found in a significant fraction of the human population. The main focus of the current study is to determine the hydrodynamic characteristics of PMeOx under physiological conditions, which serves as basis for better understanding of the use of PMeOx in pharmaceutical applications. This goal was achieved by studying PMeOx solutions in phosphate-buffered saline (PBS) as a solvent at 37 °C. This study was performed based on two series of PMeOx samples; one series is synthesized by conventional living cationic ring-opening polymerization, which is limited by the maximum chain length that can be achieved, and a second series is obtained by an alternative synthesis strategy based on acetylation of well-defined linear poly(ethylene imine) (PEI) prepared by controlled side-chain hydrolysis of a defined high molar mass of poly(2-ethyl-2-oxazoline). The combination of these two series of PMeOx allowed the determination of the Kuhn-Mark-Houwink-Sakurada equations in a broad molar mass range. For intrinsic viscosity, sedimentation and diffusion coefficients, the following expressions were obtained: η=0.015M0.77, s0=0.019M0.42 and D0=2600M-0.58, respectively. As a result, it can be concluded that the phosphate-buffered saline buffer at 37 °C represents a thermodynamically good solvent for PMeOx, based on the scaling indices of the equations. The conformational parameters for PMeOx chains were also determined, revealing an equilibrium rigidity or Kuhn segment length, (A) of 1.7 nm and a polymer chain diameter (d) of 0.4 nm. The obtained value for the equilibrium rigidity is very similar to the reported values for other hydrophilic polymers, such as PEG, poly(vinylpyrrolidone) and poly(2-ethyl-2-oxazoline), making PMeOx a relevant alternative to PEG.

2.
Molecules ; 29(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202609

ABSTRACT

An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution.

3.
Chempluschem ; 85(8): 1939-1948, 2020 08.
Article in English | MEDLINE | ID: mdl-32865345

ABSTRACT

The aim of this work was to increase the efficiency of catalytic systems for the hydrolytic cleavage of 4-nitrophenyl esters of phosphonic acids. Quaternary ammonium-containing comb-like polyelectrolytes («polymerized micelles¼) with ester cleavable fragments and a low aggregation threshold were used as catalysts. The synthesis of poly(11-acryloyloxyundecylammonium) surfactants with different counterions (Br- , NO3- , CH3 C6 H4 SO3- ) and head groups was realized by micellar free-radical polymerization. Molecular weight, critical association concentration, particle sizes and solubilization properties toward Orange OT were determined. Self-assemblies organized by poly(11-acryloyloxyundecyltrimethyl ammonium) bromide successfully catalyze the hydrolysis of 4-nitrophenyl butylchloromethylphosphonate up to two orders of magnitude compared to aqueous alkaline hydrolysis. The development of these catalysts is promising for industrial applications and organophosphorus compound detoxification.

4.
Talanta ; 130: 177-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25159396

ABSTRACT

Novel class of active ionophores for surfactant selective electrodes is proposed. PVC membrane doped with polyelectrolyte-surfactant stoichiometric complex is used for ion-selective electrode construction responsive to cetyltrimethyl ammonium bromide and related surfactants. New ionophore is quite stable and completely insoluble in aqueous media in wide range of pH. The electrode displays nearly Nernstian slope in CTAB concentration range 10(-6)-10(-3)M. Polyelectrolyte platform allows to design wide range of different ionophores responsive to cationic organic substances.


Subject(s)
Ion-Selective Electrodes , Membranes, Artificial , Polymers/chemistry , Surface-Active Agents/chemistry , Hydrogen-Ion Concentration , Ionophores , Polyvinyl Chloride/chemistry , Potentiometry , Quaternary Ammonium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...