Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(37): eadh2458, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37703365

ABSTRACT

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.

2.
Science ; 377(6611): eabn7950, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36074831

ABSTRACT

Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global "core" tipping elements and regional "impact" tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies.

3.
Clim Dyn ; 58(1-2): 609-624, 2022.
Article in English | MEDLINE | ID: mdl-35125663

ABSTRACT

Heatwaves are extreme weather events that have become more frequent and intense in Europe over the past decades. Heatwaves are often coupled to droughts. The combination of them lead to severe ecological and socio-economic impacts. Heatwaves can self-amplify through internal climatic feedback that reduces local precipitation. Understanding the terrestrial sources of local precipitation during heatwaves might help identify mitigation strategies on land management and change that alleviate impacts. Moisture recycling of local water sources through evaporation allows a region to maintain precipitation in the same region or, by being transported by winds, in adjacent regions. To understand the role of terrestrial moisture sources for sustaining precipitation during heatwaves, we backtrack and analyse the precipitation sources of Northern, Western, and Southern sub-regions across Europe during 20 heatwave periods between 1979 and 2018 using the moisture tracking model Water Accounting Model-2layers (WAM-2layers). In Northern and Western Europe, we find that stabilizing anticyclonic patterns reduce the climatological westerly supply of moisture, mainly from the North Atlantic Ocean, and enhances the moisture flow from the eastern Euro-Asian continent and from within their own regions-suggesting over 10% shift of moisture supply from oceanic to terrestrial sources. In Southern Europe, limited local moisture sources result in a dramatic decrease in the local moisture recycling rate. Forests uniformly supply additional moisture to all regions during heatwaves and thus contribute to buffer local impacts. This study suggests that terrestrial moisture sources, especially forests, may potentially be important to mitigate moisture scarcity during heatwaves in Europe. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-021-05921-7.

4.
Glob Chang Biol ; 28(9): 2930-2939, 2022 05.
Article in English | MEDLINE | ID: mdl-35100483

ABSTRACT

Forest and savanna ecosystems naturally exist as alternative stable states. The maximum capacity of these ecosystems to absorb perturbations without transitioning to the other alternative stable state is referred to as 'resilience'. Previous studies have determined the resilience of terrestrial ecosystems to hydroclimatic changes predominantly based on space-for-time substitution. This substitution assumes that the contemporary spatial frequency distribution of ecosystems' tree cover structure holds across time. However, this assumption is problematic since ecosystem adaptation over time is ignored. Here we empirically study tropical forests' stability and hydroclimatic adaptation dynamics by examining remotely sensed tree cover change (ΔTC; aboveground ecosystem structural change) and root zone storage capacity (Sr ; buffer capacity towards water-stress) over the last two decades. We find that ecosystems at high (>75%) and low (<10%) tree cover adapt by instigating considerable subsoil investment, and therefore experience limited ΔTC-signifying stability. In contrast, unstable ecosystems at intermediate (30%-60%) tree cover are unable to exploit the same level of adaptation as stable ecosystems, thus showing considerable ΔTC. Ignoring this adaptive mechanism can underestimate the resilience of the forest ecosystems, which we find is largely underestimated in the case of the Congo rainforests. The results from this study emphasise the importance of the ecosystem's temporal dynamics and adaptation in inferring and assessing the risk of forest-savannah transitions under rapid hydroclimatic change.


Subject(s)
Ecosystem , Forests , Acclimatization , Adaptation, Physiological , Trees
5.
Nat Commun ; 11(1): 4978, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020475

ABSTRACT

Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them.


Subject(s)
Forests , Tropical Climate , Africa , Asia, Southeastern , Australia , Climate Change , Conservation of Natural Resources , Ecosystem , Feedback , Rain , South America
6.
Sci Rep ; 10(1): 11333, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647292

ABSTRACT

Climate change is expected to increase the incidences of extremes in environmental conditions. To investigate how repeated disturbances affect microbial ecosystem resistance, natural lake bacterioplankton communities were subjected to repeated temperature disturbances of two intensities (25 °C and 35 °C), and subsequently to an acidification event. We measured functional parameters (bacterial production, abundance, extracellular enzyme activities) and community composition parameters (richness, evenness, niche width) and found that, compared to undisturbed control communities, the 35 °C treatment was strongly affected in all parameters, while the 25 °C treatment did not significantly differ from the control. Interestingly, exposure to multiple temperature disturbances caused gradually increasing stability in the 35 °C treatment in some parameters, while others parameters showed the opposite, indicating that the choice of parameters can strongly affect the outcome of a study. The acidification event did not lead to stronger changes in community structure, but functional resistance of bacterial production towards acidification in the 35 °C treatments increased. This indicates that functional resistance in response to a novel disturbance can be increased by previous exposure to another disturbance, suggesting similarity in stress tolerance mechanisms for both disturbances. These results highlight the need for understanding function- and disturbance-specific responses, since general responses are likely to be unpredictable.

7.
Earths Future ; 8(2): e2019EF001377, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32715010

ABSTRACT

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

8.
Microorganisms ; 8(2)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019172

ABSTRACT

Natural microbial communities in soils are highly diverse, allowing for rich networks of microbial interactions to unfold. Identifying key players in these networks is difficult as the distribution of microbial diversity at the local scale is typically non-uniform, and is the outcome of both abiotic environmental factors and microbial interactions. Here, using spatially resolved microbial presence-absence data along an aquifer transect contaminated with hydrocarbons, we combined co-occurrence analysis with association rule mining to identify potential keystone species along the hydrocarbon degradation process. Derived co-occurrence networks were found to be of a modular structure, with modules being associated with specific spatial locations and metabolic activity along the contamination plume. Association rules identify species that never occur without another, hence identifying potential one-sided cross-feeding relationships. We find that hub nodes in the rule network appearing in many rules as targets qualify as potential keystone species that catalyze critical transformation steps and are able to interact with varying partners. By contrasting analysis based on data derived from bulk samples and individual soil particles, we highlight the importance of spatial sample resolution. While individual inferred interactions are hypothetical in nature, requiring experimental verification, the observed global network patterns provide a unique first glimpse at the complex interaction networks at work in the microbial world.

9.
Water Secur ; 8: 100046, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31875874

ABSTRACT

Water security is key to planetary resilience for human society to flourish in the face of global change. Atmospheric moisture recycling - the process of water evaporating from land, flowing through the atmosphere, and falling out again as precipitation over land - is the invisible mechanism by which water influences resilience, that is the capacity to persist, adapt, and transform. Through land-use change, mainly by agricultural expansion, humans are destabilizing and modifying moisture recycling and precipitation patterns across the world. Here, we provide an overview of how moisture recycling changes may threaten tropical forests, dryland ecosystems, agriculture production, river flows, and water supplies in megacities, and review the budding literature that explores possibilities to more consciously manage and govern moisture recycling. Novel concepts such as the precipitationshed allows for the source region of precipitation to be understood, addressed and incorporated in existing water resources tools and sustainability frameworks. We conclude that achieving water security and resilience requires that we understand the implications of human influence on moisture recycling, and that new research is paving the way for future possibilities to manage and mitigate potentially catastrophic effects of land use and water system change.

10.
Earths Future ; 7(7): 748-761, 2019 Jul.
Article in English | MEDLINE | ID: mdl-33043068

ABSTRACT

Projections of global warming in Africa are generally associated with increasing aridity and decreasing water availability. However, most freshwater assessments focus on single hydroclimatic indicators (e.g., runoff, precipitation, or aridity), lacking analysis on combined changes in evaporative demand, and water availability on land. There remains a high degree of uncertainty over water implications at the basin scale, in particular for the most water-consuming sector-food production. Using the Budyko framework, we perform an assessment of future hydroclimatic change for the 50 largest African basins, finding a consistent pattern of change in four distinct regions across the two main emission scenarios corresponding to the Paris Agreement, and the business as usual. Although the Paris Agreement is likely to lead to less intense changes when compared to the business as usual, both scenarios show the same pattern of hydroclimatic shifts, suggesting a potential roadmap for hydroclimatic adaptation. We discuss the social-ecological implications of the projected hydroclimatic shifts in the four regions and argue that climate policies need to be complemented by soil and water conservation practices to make the best use of future water resources.

11.
Proc Natl Acad Sci U S A ; 115(33): 8252-8259, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30082409

ABSTRACT

We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.

12.
FEMS Microbiol Ecol ; 92(6): fiw071, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27044984

ABSTRACT

Most natural environments are characterized by frequent changes of their abiotic conditions. Microorganisms can respond to such changes by switching their physiological state between activity and dormancy allowing them to endure periods of unfavorable abiotic conditions. As a consequence, the competitiveness of microbial species is not simply determined by their growth performance under favorable conditions but also by their ability and readiness to respond to periods of unfavorable environmental conditions. The present study investigates the relevance of factors controlling the abundance and activity of individual bacterial species competing for an intermittently supplied substrate. For this purpose, numerical experiments were performed addressing the response of microbial systems to regularly applied feeding pulses. Simulation results show that community dynamics may exhibit a non-trivial link to the frequency of the external constraints and that for a certain combination of these environmental conditions coexistence of species is possible. The ecological implication of our results is that even non-dominant, neglected species can have a strong influence on realized species composition of dominant key species, due to their invisible presence enable the coexistence between important key species and by this affecting provided function of the system.


Subject(s)
Bacteria/growth & development , Computer Simulation , Microbial Interactions , Bacteria/metabolism , Ecology , Models, Theoretical
13.
Proc Biol Sci ; 283(1825): 20152724, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26888033

ABSTRACT

Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Eukaryota/metabolism , Microbiota , Nitrogen/metabolism , Denitrification , Food Chain
14.
Proc Natl Acad Sci U S A ; 112(48): 14888-93, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26578806

ABSTRACT

Assessing the ecological impacts of environmental change requires knowledge of the relationship between biodiversity and ecosystem functioning. The exact nature of this relationship can differ considerably between ecosystems, with consequences for the efficacy of species diversity as a buffer against environmental change. Using a microbial model system, we show that the relationship can vary depending on environmental conditions. Shapes suggesting functional redundancy in one environment can change, suggesting functional differences in another environment. We find that this change is due to shifting species roles and interactions. Species that are functionally redundant in one environment may become pivotal in another. Thus, caution is advised in drawing conclusions about functional redundancy based on a single environmental situation. It also implies that species richness is important because it provides a pool of species with potentially relevant traits. These species may turn out to be essential performers or partners in new interspecific interactions after environmental change. Therefore, our results challenge the generality of functional redundancy.


Subject(s)
Bacteria/growth & development , Microbial Consortia/physiology , Models, Biological
15.
Int J Data Min Bioinform ; 13(3): 289-319, 2015.
Article in English | MEDLINE | ID: mdl-26547981

ABSTRACT

Knowledge of metabolic processes is collected in easily accessable online databases which are increasing rapidly in content and detail. Using these databases for the automatic construction of metabolic network models requires high accuracy and consistency. In this bipartite study we evaluate current accuracy and consistency problems using the KEGG database as a prominent example and propose design principles for dealing with such problems. In the first half, we present our computational approach for classifying inconsistencies and provide an overview of the classes of inconsistencies we identified. We detected inconsistencies both for database entries referring to substances and entries referring to reactions. In the second part, we present strategies to deal with the detected problem classes. We especially propose a rule-based database approach which allows for the inclusion of parameterised molecular species and parameterised reactions. Detailed case-studies and a comparison of explicit networks from KEGG with their anticipated rule-based representation underline the applicability and scalability of this approach.


Subject(s)
Algorithms , Data Mining/methods , Database Management Systems , Databases, Genetic , Datasets as Topic , Metabolic Networks and Pathways/physiology , Animals , Humans , Meaningful Use , Metabolome/physiology
16.
Sci Total Environ ; 537: 33-42, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282737

ABSTRACT

In this study, we investigated the effect of land use intensity, soil parameters and vegetation on protistan communities in grassland soils. We performed qualitative (T-RFLP) and quantitative (qPCR) analyses using primers specifically targeting the 18S rRNA gene for all Eukarya and for two common flagellate groups, i.e. the Chrysophyceae and the Kinetoplastea. Both approaches were applied to extracted soil DNA and RNA, in order to distinguish between the potentially active protists (i.e. RNA pool) and the total protistan communities, including potentially inactive and encysted cells (i.e. DNA pool). Several environmental determinants such as site, soil parameters and vegetation had an impact on the T-RFLP community profiles and the abundance of the quantified 18S rRNA genes. Correlating factors often differed between quantitative (qPCR) and qualitative (T-RFLP) approaches. For instance the Chrysophyceae/Eukarya 18S rDNA ratio as determined by qPCR correlated with the C/N ratio, whereas the community composition based on T-RLFP analysis was not affected indicating that both methods taken together provide a more complete picture of the parameters driving protist diversity. Moreover, distinct T-RFs were obtained, which could serve as potential indicators for either active organisms or environmental conditions like water content. While site was the main determinant across all investigated exploratories, land use seemed to be of minor importance for structuring protist communities. The impact of other parameters differed between the target groups, e.g. Kinetoplastea reacted on changes to water content on all sites, whereas Chrysophyceae were only affected in the Schorfheide. Finally, in most cases different responses were observed on RNA- and DNA-level, respectively. Vegetation for instance influenced the two flagellate groups only at the DNA-level across all sites. Future studies should thus include different protistan groups and also distinguish between active and inactive cells, in order to reveal causal shifts in community composition and abundance in agriculturally used systems.


Subject(s)
Agriculture , Grassland , Soil Microbiology , Biodiversity , Environmental Monitoring , Phylogeny , Soil
17.
FEMS Microbiol Ecol ; 91(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-25764564

ABSTRACT

Biogas is an important renewable energy carrier. It is a product of stepwise anaerobic degradation of organic materials by highly diverse microbial communities forming complex interlinking metabolic networks. Knowledge about the microbial background of long-term stable process performance in full-scale reactors is crucial for rationally improving the efficiency and reliability of biogas plants. To generate such knowledge, in the present study three parallel mesophilic full-scale reactors fed exclusively with energy crops were sampled weekly over one year. Physicochemical process parameters were determined and the microbial communities were analysed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and 454-amplicon sequencing. For investigating the methanogenic community, a high-resolution T-RFLP approach based on the mcrA gene was developed by selecting restriction enzymes with improved taxonomic resolution compared to previous studies. Interestingly, no Methanosarcina-related generalists, but rather specialized hydrogenotrophic and acetoclastic methanogenic taxa were detected. In general, the microbial communities in the non-connected reactors were remarkably stable and highly similar indicating that identical environmental and process parameters resulted in identical microbial assemblages and dynamics. Practical implications such as flexible operation schemes comprising controlled variations of process parameters for an efficient microbial resource management under fluctuating process conditions are discussed.


Subject(s)
Biofuels/microbiology , Bioreactors/microbiology , Crops, Agricultural/metabolism , Euryarchaeota/classification , Zea mays/metabolism , Actinobacteria/genetics , Actinobacteria/metabolism , Base Sequence , Chloroflexi/genetics , Chloroflexi/metabolism , Clostridium/genetics , Clostridium/metabolism , Crops, Agricultural/microbiology , DNA Restriction Enzymes/genetics , DNA, Archaeal/genetics , Euryarchaeota/genetics , Euryarchaeota/metabolism , Lactobacillus/genetics , Lactobacillus/metabolism , Microbiota/physiology , Phylogeny , Polymorphism, Restriction Fragment Length , Reproducibility of Results , Sequence Analysis, DNA , Streptococcus/genetics , Streptococcus/metabolism , Zea mays/microbiology
18.
Science ; 347(6223): 1259855, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25592418

ABSTRACT

The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries­climate change and biosphere integrity­have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.


Subject(s)
Biological Evolution , Climate Change , Earth, Planet , Ozone Depletion , Atmosphere , Fresh Water , Humans
19.
J Biotechnol ; 187: 60-70, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25026460

ABSTRACT

Serial repitching of brewing yeast inoculates is an important economic factor in the brewing industry, as their propagation is time and resource intensive. Here, we investigated whether replicative aging and/or the population distribution status changed during serial repitching in three different breweries with the same brewing yeast strain but different abiotic backgrounds and repitching regimes with varying numbers of reuses. Next to bud scar numbers the DNA content of the Saccharomyces pastorianus HEBRU cells was analyzed. Gene expression patterns were investigated using low-density microarrays with genes for aging, stress, storage compound metabolism and cell cycle. Two breweries showed a stable rejuvenation rate during serial repitching. In a third brewery the fraction of virgin cells varied, which could be explained with differing wort aeration rates. Furthermore, the number of bud scars per cell and cell size correlated in all 3 breweries throughout all runs. Transcriptome analyses revealed that from the 6th run on, mainly for the cells positive gene expression could be seen, for example up-regulation of trehalose and glycogen metabolism genes. Additionally, the cells' settling in the cone was dependent on cell size, with the lowest and the uppermost cone layers showing the highest amount of dead cells. In general, cells do not progressively age during extended serial repitching.


Subject(s)
Cellular Senescence/physiology , Fermentation , Food Industry , Saccharomyces , Beer , Cell Cycle/physiology , Cell Size , Cluster Analysis , DNA, Fungal/analysis , Gene Expression , Gene Expression Profiling , Saccharomyces/cytology , Saccharomyces/genetics , Saccharomyces/metabolism
20.
J Clin Microbiol ; 52(5): 1754-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24622095

ABSTRACT

Qualitative and quantitative 16S rRNA gene-based real-time PCR and direct sequencing were applied for rapid detection and identification of bacterial DNA (bactDNA) in 356 ascites samples. bactDNA was detected in 35% of samples, with a mean of 3.24 log copies ml(-1). Direct sequencing of PCR products revealed 62% mixed chromatograms predominantly belonging to Gram-positive bacteria. Terminal restriction fragment length polymorphism (T-RFLP) results of a sample subset confirmed sequence data showing polymicrobial DNA contents in 67% of bactDNA-positive ascites samples.


Subject(s)
Ascites/diagnosis , Ascites/microbiology , Polymorphism, Restriction Fragment Length/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Genes, rRNA/genetics , Humans , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...