Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 190: 107-120, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423417

ABSTRACT

The self-diffusion coefficient of active ingredients (AI) in polymeric solid dispersions is one of the essential parameters for the rational formulation design in life sciences. Measuring this parameter for products in their application temperature range can, however, be difficult to realise and time-consuming (due to the slow kinetics of diffusion). The aim of this study is to present a simple and time-saving platform for predicting the AI self-diffusivity in amorphous and semi-crystalline polymers on the basis of a modified version of Vrentas' and Duda's free volume theory (FVT) [A. Mansuri, M. Völkel, T. Feuerbach, J. Winck, A.W.P. Vermeer, W. Hoheisel, M. Thommes, Modified free volume theory for self-diffusion of small molecules in amorphous polymers, Macromolecules. (2023)]. The predictive model discussed in this work requires pure-component properties as its input and covers the approximate temperature range of T < 1.2 Tg, the whole compositional range of the binary mixtures (as long as a molecular mixture is present), and the whole crystallinity range of the polymer. In this context, the self-diffusion coefficients of the AIs imidacloprid, indomethacin, and deltamethrin were predicted in polyvinylpyrrolidone, polyvinylpyrrolidone/vinyl acetate, polystyrene, polyethylene, and polypropylene. The results highlight the profound importance of the kinetic fragility of the solid dispersion on the molecular migration; a property which in some cases might entail higher self-diffusion coefficients despite an increase in the molecular weight of the polymer. We interpret this observation within the context of the theory of heterogeneous dynamics in glass-formers [M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51 (2000) 99-128] by attributing it to the stronger presence of "fluid-like" mobile regions in fragile polymers offering facilitated routes for the AI diffusion within the dispersion. The modified FVT further allows for identifying the influence of some structural and thermophysical material properties on the translational mobility of AIs in binary dispersions with polymers. In addition, estimates of self-diffusivity in semi-crystalline polymers are provided by further accounting for the tortuosity of the diffusion paths and the chain immobilisation at the interface of the amorphous and crystalline phases.


Subject(s)
Chemistry, Pharmaceutical , Povidone , Povidone/chemistry , Chemistry, Pharmaceutical/methods , Solubility , Polymers/chemistry
2.
Mol Pharm ; 20(4): 2067-2079, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36930788

ABSTRACT

The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.


Subject(s)
Molecular Dynamics Simulation , Polymers , Polymers/chemistry , Temperature , Neonicotinoids , Calorimetry, Differential Scanning , Solubility , Drug Compounding/methods
3.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36897219

ABSTRACT

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Subject(s)
Nitro Compounds , Polymers , Crystallization/methods , Polymers/chemistry , Neonicotinoids , Solubility , Calorimetry, Differential Scanning
4.
Pharmaceutics ; 14(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36145505

ABSTRACT

Even though hot melt extrusion (HME) is a commonly applied process in the pharmaceutical area, determination of the optimal process parameters is demanding. The goal of this study was to find a rational approach for predetermining suitable extrusion parameters, with a focus on material temperature and throughput. A two-step optimization procedure, called scale-independent optimization strategy (SIOS), was applied and developed further, including the use of an autogenic extrusion mode. Three different polymers (Plasdone S-630, Soluplus, and Eudragit EPO) were considered, and different optimal process parameters were assessed. The maximum barrel load was dependent on the polymers' bulk density and the extruder size. The melt temperature was influenced by the screw speed and the rheological behavior of the polymer. The melt viscosity depended mainly on the screw speed and was self-adjusted in the autogenic extrusion. A new approach, called SIOS 2.0, was suggested for calculating the extrusion process parameters (screw speed, melt temperature and throughput) based on the material data and a few extrusion experiments.

5.
Molecules ; 26(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498606

ABSTRACT

The filament is the most widespread feedstock material form used for fused deposition modeling printers. Filaments must be manufactured with tight dimensional tolerances, both to be processable in the hot-end and to obtain printed objects of high quality. The ability to successfully feed the filament into the printer is also related to the mechanical properties of the filament, which are often insufficient for pharmaceutically relevant excipients. In the scope of this work, an 8 mm single screw hot-end was designed and characterized, which allows direct printing of materials from their powder form and does not require an intermediate filament. The capability of the hot-end to increase the range of applicable excipients to fused deposition modeling was demonstrated by processing and printing several excipients that are not suitable for fused deposition modeling in their filament forms, such as ethylene vinyl acetate and poly(1-vinylpyrrolidone-co-vinyl acetate). The conveying characteristic of the screw was investigated experimentally with all materials and was in agreement with an established model from literature. The complete design information, such as the screw geometry and the hot-end dimensions, is provided in this work.


Subject(s)
Drug Compounding/methods , Excipients/chemistry , Polymers/chemistry , Powders/chemistry , Solubility , Vinyl Compounds/chemistry
6.
Pharm Dev Technol ; 25(6): 650-658, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32064994

ABSTRACT

In 3D printing, the schematic representation of an object must be converted into machine commands. This process is called slicing. Depending on the slicing parameters, products with different properties are obtained. In this work, biodegradable drug-eluting tracheal stents consisting of a medical grade poly(lactic-co-glycolic acid) and a drug were printed by fused deposition modeling. A slicing parameter optimization method was proposed with the aim of obtaining a particularly low stent porosity and high mechanical strength while maintaining the stent dimensions, which is essential regarding patient-tailored implants. Depending on the three slicing parameters printing pattern, lateral strand distance and spatial fill, porosities of approximately 2-5% were obtained. The tensile strength was used as a measure for the mechanical strength of the implants and was found to be dependent on the porosity as well as the strand orientation relative to the load direction. Strand orientations in load direction yielded the highest tensile strengths of 40-46 MPa and the bonding between individual layers yielded the lowest tensile strengths of 20-24 MPa. In vitro dissolution tests of successfully printed stents were used to predict sustained release of the drug over several months.


Subject(s)
Biodegradable Plastics/chemical synthesis , Drug-Eluting Stents/trends , Polylactic Acid-Polyglycolic Acid Copolymer/chemical synthesis , Printing, Three-Dimensional/trends , Technology, Pharmaceutical/methods , Trachea , Humans , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Software/trends , Technology, Pharmaceutical/trends , Tensile Strength
7.
Pharm Dev Technol ; 24(4): 487-493, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30149761

ABSTRACT

The manufacturing of custom implants and patient-tailored drug dosage forms with fused deposition modeling (FDM) three-dimensional (3D) printing is currently considered to be very promising. Most FDM printers are designed as an open filament system, for which filaments with a defined size are required. In addition to this processing requirement, the filament material must be of medical or pharmaceutical quality, in order to be suitable in these applications. In this work, filaments with nominal diameters of 1.75 mm and diameter tolerances of ±0.05 mm or lower were developed in a continuous extrusion process. The filaments were made from different medical grade poly(lactic-co-glycolic acid) (PLGA) copolymers. Thermal characterization of the material with differential scanning calorimetry (DSC) showed increased material degradation with increasing hydrophilicity. Mechanical characterization of the filaments showed tensile strengths in the range of 41-48 MPa and Young's moduli in the range of 2055-2099 MPa. Stress relaxation tests showed no irreversible change in filament diameter under processing conditions similar to the utilized 3D printer. Due to unexpected differences in processability in the 3D printer, the molecular weight of the materials was identified as an additional relevant parameter.


Subject(s)
Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Printing, Three-Dimensional/instrumentation , Tensile Strength
8.
Pharm Dev Technol ; 23(10): 1136-1145, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29938558

ABSTRACT

Fused deposition modeling (FDM) is a promising 3D printing technique for the fabrication of personalized drug dosage forms and patient-specific implants. However, there are no market products produced by FDM available at this time. One of the reasons is the lack of a consistent and harmonized approval procedure. In this study, three FDM printers have been characterised with respect to printing parameters relevant for pharmaceutical and medical applications, namely the positioning, hot-end temperature, material residence time, printing velocity and volumetric material flow. The printers are the Ultimaker 2 (UM2), the PRotos v3 (PR3) as well as an in-house developed printer (IDP). The positioning results showed discrepancies between the printers, which are mainly based on different types of drive systems. Due to comparable utilised hot-ends and nozzle geometries, the results for the temperature and residence time distribution measurements were quite similar. The IDP has a high positioning accuracy but is limited with respect to printing velocity, while the achievable material volume flows were different for all printers. The presented characterisation method aims to contribute to the development of a harmonized equipment qualification framework for FDM printers, which could lead to an acceleration and facilitation of an approval procedure for 3D printed products.


Subject(s)
Printing, Three-Dimensional/instrumentation , Technology, Pharmaceutical/instrumentation , Dosage Forms , Equipment Design , Precision Medicine , Prostheses and Implants , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...