Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 359: 121021, 2024 May.
Article in English | MEDLINE | ID: mdl-38678894

ABSTRACT

Tackling climate change remains a critical challenge for society. Achieving climate neutrality requires a massive expansion of renewable energies such as wind and photovoltaics (PV). Agriculture plays a key role in this context, especially as the expansion of ground-mounted PV systems often leads to land-use conflicts. Agrivoltaics (AV), which combines agricultural and electricity production, can be a solution, but the synergies are particularly dependent on local agronomic conditions. There is also a knowledge gap in how AV expansion impacts greenhouse gas (GHG) emissions at the landscape level and how it contributes to regional emission reduction targets. In this study, we analysed the economic and climate change mitigation impacts of AV expansion pathways in the German state Baden-Württemberg using an integrated land use model and life cycle assessment under the assumption of general rentability of electricity production by AV. We found that implementing AV on 1%-5% of the regions's arable and grassland area reduced the total agricultural gross margin by a maximum of approximately 0.5%. Concurrently, AV implementation reduced GHG emissions by about 1.2 million to 5.9 million metric tons of CO2 equivalent (Mt CO2-eq). Even if this reduction is almost exclusively accounted for in the energy sector, in absolute terms it amounts to more than the current GHG emissions from Baden-Württemberg's agricultural sector (about 4.4 Mt CO2-eq in 2021). In the 5% expansion scenario, almost 90% of the installations were installed on grassland, but this share dropped to 72% when considering landscape quality constraints. Although we found considerable regional disparity, our findings still suggest that AV is an essential component for regional emission reduction targets. These results are particularly relevant for policymakers in spatial planning, agricultural and energy policy.


Subject(s)
Agriculture , Climate Change , Greenhouse Gases , Models, Economic , Agriculture/methods , Greenhouse Gases/analysis , Farms
2.
PLoS One ; 13(6): e0199025, 2018.
Article in English | MEDLINE | ID: mdl-29897989

ABSTRACT

Organic agriculture (OA) is considered a strategy to make agriculture more sustainable. Bhutan has embraced the ambitious goal of becoming the world's first 100% organic nation. By analysing recent on-farm data in Bhutan, we found organic crop yields on average to be 24% lower than conventional yields. Based on these yield gaps, we assess the effects of the 100% organic conversion policy by employing an economy-wide computable general equilibrium (CGE) model with detailed representation of Bhutan's agricultural sector incorporating agroecological zones, crop nutrients, and field operations. Despite a low dependency on agrochemicals from the onset of this initiative, we find a considerable reduction in Bhutan's GDP, substantial welfare losses, particularly for non-agricultural households, and adverse impacts on food security. The yield gap is the main driver for a strong decline in domestic agricultural production, which is largely compensated by increased food imports, resulting in a weakening of the country's cereal self-sufficiency. Current organic by default farming practices in Bhutan are still underdeveloped and do not apply the systems approach of organic farming as defined in the IFOAM organic farming standards. This is reflected in the strong decline of nitrogen (N) availability to crops in our simulation and bears potential for increased yields in OA. Improvement of soil-fertility practices, e.g., the adoption of N-fixing crops, improved animal husbandry systems with increased provision of animal manure and access to markets with price premium for organic products could help to lower the economic cost of the large-scale conversion.


Subject(s)
Crop Production/economics , Organic Agriculture/economics , Bhutan , Food Supply , Models, Theoretical , Nitrogen/metabolism , Organic Agriculture/legislation & jurisprudence , Policy , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...