Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(6): 106894, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37260742

ABSTRACT

We have investigated magnetism of the Al28Co20Cr11Fe15Ni26 single-crystalline high-entropy alloy. The material is nanostructured, composed of a B2 matrix with dispersed spherical-like A2 nanoparticles of average diameter 64 nm. The magnetism was studied from 2 to 400 K via direct-current magnetization, hysteresis curves, alternating-current magnetic susceptibility, and thermoremanent magnetization time decay, to determine the magnetic state that develops in this highly structurally and chemically inhomogeneous material. The results reveal that the Cr-free B2 matrix of composition Al28Co25Fe15Ni32 forms a disordered ferromagnetic (FM) state that undergoes an FM transition at TC≈ 390 K. The Al- and Ni-free A2 nanoparticles of average composition Co19Cr56Fe25 adopt a core-shell structure, where the shells of about 2 nm thickness are CoFe enriched. While the shells are FM, the nanoparticle cores are asperomagnetic, classifying into the broad class of spin glasses. Asperomagnetism develops below 15 K and exhibits broken-ergodicity phenomena, typical of magnetically frustrated systems.

2.
Nat Commun ; 13(1): 7509, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36473859

ABSTRACT

High-Entropy Alloys (HEAs) are a new family of crystalline random alloys with four or more elements in a simple unit cell, at the forefront of materials research for their exceptional mechanical properties. Their strong chemical disorder leads to mass and force-constant fluctuations which are expected to strongly reduce phonon lifetime, responsible for thermal transport, similarly to glasses. Still, the long range order would associate HEAs to crystals with a complex disordered unit cell. These two families of materials, however, exhibit very different phonon dynamics, still leading to similar thermal properties. The question arises on the positioning of HEAs in this context. Here we present an exhaustive experimental investigation of the lattice dynamics in a HEA, Fe20Co20Cr20Mn20Ni20, using inelastic neutron and X-ray scattering. We demonstrate that HEAs present unique phonon dynamics at the frontier between fully disordered and ordered materials, characterized by long-propagating acoustic phonons in the whole Brillouin zone.

3.
Entropy (Basel) ; 20(9)2018 Aug 30.
Article in English | MEDLINE | ID: mdl-33265743

ABSTRACT

We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, cp-measurements are carried out from -170 °C to the materials' solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. We applied the rule of mixture to predict molar heat capacities of the alloys at room temperature, which were in good agreement with the Dulong-Petit law. The molar heat capacity of the studied alloys was about three times the universal gas constant, hence the thermal entropy was the major contribution to total entropy. The configurational entropy, due to the chemical composition and number of components, contributes less on the absolute scale. Thermal entropy has approximately equal values for all alloys tested by DSC, while the crystal structure shows a small effect in their order. Finally, the contributions of entropy and enthalpy to the Gibbs free energy was calculated and examined and it was found that the stabilization of the solid solution phase in high entropy alloys was mostly caused by increased configurational entropy.

4.
Sci Rep ; 6: 29700, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27430993

ABSTRACT

High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure.

5.
Chem Soc Rev ; 41(20): 6745-59, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22760204

ABSTRACT

Dislocations in quasicrystals, as a direct result of the lack of translational symmetry in these materials, possess various salient features. The Burgers vector of a dislocation in an icosahedral quasicrystal is a 6-dimensional vector, which reflects the fact that the dislocation, besides the phonon-type strain field analogous to dislocations in ordinary crystals, is associated inseparably with a further type of defect, the phasons. Phasons are critically involved in the formation and motion of dislocations in quasicrystals and govern the macroscopic plastic behaviour of these materials. In this article the properties of dislocations in icosahedral quasicrystals are comprehensively reviewed, starting from a continuum-mechanical description, via core-structure simulation, to their full experimental characterization. The experimental results presented address the icosahedral phases in the well explored systems Al-Pd-Mn and Zn-Mg-Dy.

SELECTION OF CITATIONS
SEARCH DETAIL
...