Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35625726

ABSTRACT

(1) The monocytic leukemia cell line THP-1 and primary monocyte-derived macrophages (MDMs) are popular in vitro model systems to study human innate immunity, wound healing, and tissue regeneration. However, both cell types differ significantly in their origin and response to activation stimuli. (2) Resting THP-1 and MDMs were stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ) and analyzed by Raman microspectroscopy (RM) before and 48 h after activation. Raman data were subsequently analyzed using principal component analysis. (3) We were able to resolve and analyze the spatial distribution and molecular composition of proteins, nucleic acids, and lipids in resting and activated THP-1 and MDMs. Our findings reveal that proinflammatory activation-induced significant spectral alterations at protein and phospholipid levels in THP-1. In MDMs, we identified that nucleic acid and non-membrane-associated intracellular lipid composition were also affected. (4) Our results show that it is crucial to carefully choose the right cell type for an in vitro model as the nature of the cells itself may impact immune cell polarization or activation results. Moreover, we demonstrated that RM is a sensitive tool for investigating cell-specific responses to activation stimuli and monitoring molecular changes in subcellular structures.

2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34934001

ABSTRACT

Biomaterial characteristics such as surface topographies have been shown to modulate macrophage phenotypes. The standard methodologies to measure macrophage response to biomaterials are marker-based and invasive. Raman microspectroscopy (RM) is a marker-independent, noninvasive technology that allows the analysis of living cells without the need for staining or processing. In the present study, we analyzed human monocyte-derived macrophages (MDMs) using RM, revealing that macrophage activation by lipopolysaccharides (LPS), interferons (IFN), or cytokines can be identified by lipid composition, which significantly differs in M0 (resting), M1 (IFN-γ/LPS), M2a (IL-4/IL-13), and M2c (IL-10) MDMs. To identify the impact of a biomaterial on MDM phenotype and polarization, we cultured macrophages on titanium disks with varying surface topographies and analyzed the adherent MDMs with RM. We detected surface topography-induced changes in MDM biochemistry and lipid composition that were not shown by less sensitive standard methods such as cytokine expression or surface antigen analysis. Our data suggest that RM may enable a more precise classification of macrophage activation and biomaterial-macrophage interaction.


Subject(s)
Lipidomics/methods , Macrophage Activation/physiology , Macrophages , Spectrum Analysis, Raman/methods , Biocompatible Materials/pharmacology , Cytokines/pharmacology , Female , Humans , Immunity, Innate , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male
3.
ACS Appl Mater Interfaces ; 13(46): 55534-55549, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34762399

ABSTRACT

A full understanding of the relationship between surface properties, protein adsorption, and immune responses is lacking but is of great interest for the design of biomaterials with desired biological profiles. In this study, polyelectrolyte multilayer (PEM) coatings with gradient changes in surface wettability were developed to shed light on how this impacts protein adsorption and immune response in the context of material biocompatibility. The analysis of immune responses by peripheral blood mononuclear cells to PEM coatings revealed an increased expression of proinflammatory cytokines tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1ß, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 and the surface marker CD86 in response to the most hydrophobic coating, whereas the most hydrophilic coating resulted in a comparatively mild immune response. These findings were subsequently confirmed in a cohort of 24 donors. Cytokines were produced predominantly by monocytes with a peak after 24 h. Experiments conducted in the absence of serum indicated a contributing role of the adsorbed protein layer in the observed immune response. Mass spectrometry analysis revealed distinct protein adsorption patterns, with more inflammation-related proteins (e.g., apolipoprotein A-II) present on the most hydrophobic PEM surface, while the most abundant protein on the hydrophilic PEM (apolipoprotein A-I) was related to anti-inflammatory roles. The pathway analysis revealed alterations in the mitogen-activated protein kinase (MAPK)-signaling pathway between the most hydrophilic and the most hydrophobic coating. The results show that the acute proinflammatory response to the more hydrophobic PEM surface is associated with the adsorption of inflammation-related proteins. Thus, this study provides insights into the interplay between material wettability, protein adsorption, and inflammatory response and may act as a basis for the rational design of biomaterials.


Subject(s)
Anti-Inflammatory Agents/chemistry , Coated Materials, Biocompatible/chemistry , Cytokines/immunology , Inflammation/immunology , Polyelectrolytes/chemistry , Adsorption , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Cytokines/analysis , Cytokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Humans , Hydrophobic and Hydrophilic Interactions , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Particle Size , Polyelectrolytes/pharmacology , Surface Properties , Wettability
4.
Tissue Eng Part C Methods ; 27(11): 589-604, 2021 11.
Article in English | MEDLINE | ID: mdl-34693733

ABSTRACT

In this study, we describe the production of hybrid gelatin-poly-L-lactide electrospun scaffolds whose hydrophilicity was controlled by binding increasing concentrations of hyaluronic acid (HA). We show that cross-linking has advantages over coating when aiming to functionalize the scaffolds with HA. The here described scaffolds structurely mimicked the complexity of the extracellular matrix, and when excited by second harmonic generation, they produced a signal that is typical of collagen-containing biological fibers. Fluorescence lifetime imaging microscopy (FLIM) was used to marker-independently monitor the growth of human dermal fibroblasts on the electrospun scaffolds using reduced (phosphorylated) nicotinamide adenine dinucleotide as target. Benefitting from the different fluorescence lifetimes of the polymer and the endogenous cellular fluorophore, we were able to distinguish and separate the signals produced by the cells from the signals generated by the electrospun scaffolds. FLIM further allowed the detection of metabolic differences in the cells seeded on the HA-functionalized scaffolds compared with cells that were cultured on nonfunctionalized control scaffolds.


Subject(s)
Gelatin , Hyaluronic Acid , Humans , Hydrophobic and Hydrophilic Interactions , Polyesters
5.
Biomedicines ; 9(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578986

ABSTRACT

Peritoneal mucosa of mesothelial cells line the abdominal cavity, surround intestinal organs and the female reproductive organs and are responsible for immunological integrity, organ functionality and regeneration. Peritoneal diseases range from inflammation, adhesions, endometriosis, and cancer. Efficient technologies to isolate and cultivate healthy patient-derived mesothelial cells with maximal purity enable the generation of capable 2D and 3D as well as in vivo-like microfluidic cell culture models to investigate pathomechanisms and treatment strategies. Here, we describe a new and easily reproducible technique for the isolation and culture of primary human mesothelial cells from laparoscopic peritoneal wash cytology. We established a protocol containing multiple washing and centrifugation steps, followed by cell culture at the highest purity and over multiple passages. Isolated peritoneal mesothelial cells were characterized in detail, utilizing brightfield and immunofluorescence microscopy, flow cytometry as well as Raman microspectroscopy and multivariate data analysis. Thereby, cytokeratin expression enabled specific discrimination from primary peritoneal human fibroblasts. Raman microspectroscopy and imaging were used to study morphology and biochemical properties of primary mesothelial cell culture compared to cryo-fixed and cryo-sectioned peritoneal tissue.

6.
J Mater Chem B ; 6(40): 6399-6412, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-32254648

ABSTRACT

Hybrid scaffolds composed of synthetic polymers and naturally occurring components have become more relevant in the field of tissue engineering and regenerative medicine. Synthetic polymers are responsible for scaffold durability, strength and structural integrity; however, often do not provide biological signals. Introducing a biological component leads to more advanced and biocompatible scaffolds. In order to use these scaffolds as implants, a deeper knowledge of material characteristics and the impact of the biological component on the scaffold mechanical properties are required. Furthermore, it is necessary to implement fast, easy and non-invasive methods to determine material characteristics. In this work, we aimed to generate gelatin-poly-l-lactide (PLA) hybrids via electrospinning with defined, controllable and tunable scaffold characteristics. Using Raman microspectroscopy, we demonstrated the effectiveness of the cross-linking reaction and evaluated the increasing PLA content in the hybrid scaffolds with a non-invasive approach. Using multiphoton microscopy, we showed that gelatin fibers electrospun from a fluorinated solvent exhibit a second harmonic generation (SHG) signal typical for collagen-like structures. Compared to pure gelatin, where the SHG signal vanishes after cross-linking, the signal could be preserved in the hybrid scaffolds even after cross-linking. Furthermore, we non-invasively imaged cellular growth of human dermal fibroblasts on the hybrid electrospun scaffolds and performed fluorescence lifetime imaging microscopy on the cell-seeded hybrids, where we were able to discriminate between cells and scaffolds. Here, we successfully employed non-invasive methods to evaluate scaffold characteristics and investigate cell-material interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...