Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Biosci ; 11: 2275-85, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16720314

ABSTRACT

Quercetin, a flavonoid found in many fruits and vegetables, belongs to an extensive class of polyphenolic compounds. Previous studies reported that quercetin inhibits the proliferation of various cancer cells and tumor growth in animal models. We investigated the growth inhibition and colony formation of quercetin on three bladder cancer cells (EJ, J82 and T24). The expression of tumor suppressor genes and oncogenes such as P53, Survivin, PTEN, as well as the methylation status of these genes was also evaluated. We observed that quercetin induced apoptosis in bladder cancer cells in a time- and dose-dependent manner. Quercetin (100 micromolars) significantly inhibited EJ, T24 and J82 cell growth accompanied by an increase in the G0/G1 phase. In all cell lines, quercetin decreased the expression of mutant P53 and Survivin proteins. However, there was no change in the level of PTEN protein. Moreover, the DNA methylation levels of the estrogen receptor (Er-beta), P16INK4a and RASSF1A were strongly decreased (from 35 to 70%) in the quercetin-treated group compared to the control. In conclusion, our study suggested that quercetin inhibits growth, colony formation and hypermethylation of bladder cancer cell lines. Quercetin-induced apoptosis might be associated with a decrease in mutant P53 and Survivin proteins.


Subject(s)
Apoptosis/drug effects , Carcinoma/pathology , Cell Cycle/drug effects , Cell Survival/drug effects , Quercetin/pharmacology , Urinary Bladder Neoplasms/pathology , DNA Methylation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Inhibitor of Apoptosis Proteins , Microtubule-Associated Proteins/biosynthesis , Neoplasm Proteins/biosynthesis , Polymerase Chain Reaction , Survivin , Tumor Cells, Cultured , Tumor Suppressor Protein p53/biosynthesis
3.
Front Biosci ; 11: 2574-89, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16720335

ABSTRACT

Natural products and health foods have recently received a lot of attention both by health professionals and the common population for improving overall well-being, as well as in the prevention of diseases including cancer. In this line, all types of fruits and vegetables have been re-evaluated and recognized as valuable sources of nutraceuticals. The great number of potentially active nutrients and their multifunctional properties make cactus pear (Opuntia spp.) fruits and cladodes perfect candidates for the production of health-promoting food and food supplements. Although traditionally appreciated for its pharmacological properties by the Native Americans, cactus pear is still hardly recognized because of insufficient scientific information. However, recent studies on Opuntia spp. have demonstrated cactus pear fruit and vegetative cladodes to be excellent candidates for the development of healthy food. Therefore, this review summarizes current knowledge on the chemical composition of Opuntia cacti with particular emphasis in its use as food and medicine.


Subject(s)
Opuntia/chemistry , Phytotherapy , Fruit , Geography , Nutritive Value
4.
Mol Reprod Dev ; 71(3): 339-46, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15806560

ABSTRACT

Exposing day 5 bovine morulae to reactive oxygen species induces a delayed degeneration of some blastocysts on day 8 post-insemination (pi) but without affecting the blastocyst rates. The aim of this study was to characterize the resisting and the degenerating population of blastocysts. The kinetics of degeneration of the embryos exposed to the two pro-oxidant agents: 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and buthionine sulfoximine (BSO) was evaluated using time-lapse cinematography. With both agents the first signs of degeneration appeared at day 7.5 pi but the duration of the degeneration process was shorter in presence of AAPH than BSO (4.2 vs. 12.5 hr, ANOVA, P < 0.05). The resisting blastocysts derived from morulae with a larger diameter (mean diameter: 161 vs. 154 microm, ANOVA, P < 0.05) and showed an earlier cavitation (135 vs. 142 hpi, P < 0.05) than the degenerating ones. The profile of protein neosynthesis at day 7 was not affected by the treatment. The proportion of male embryos was more important in the resisting than in the degenerating population (70 vs. 55%, chi2, P < 0.05) especially when the stress was induced by AAPH. The quality of the resisting embryos, measured by the total cell number and the rate of apoptosis, did not seem to be affected when compared to control embryos. In conclusion, resistance to oxidative stress seems related to the kinetics of development and/or the sex of the embryos. Resisting embryos apparently display a quality similar to untreated embryos.


Subject(s)
Blastocyst/metabolism , Morula/metabolism , Oxidants/toxicity , Oxidative Stress/drug effects , Protein Biosynthesis/drug effects , Animals , Blastocyst/cytology , Cattle , Cells, Cultured , Male , Morula/cytology
5.
Theriogenology ; 61(1): 71-90, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14643863

ABSTRACT

This study was conducted to evaluate the effect of beta-mercaptoethanol (a stimulator of glutathione synthesis) and Trolox (an hydrosoluble analogue of Vitamin E) on bovine embryos cultured from the morula stage (Day 5 post-insemination; pi) under oxidative stress conditions. Culture of embryos with increased doses of Trolox showed a dose-dependent embryotoxicity on Day 8 pi. The use of 400 microM Trolox as well as beta-mercaptoethanol at 100 microM prevented at least partly (P < 0.05) the prooxidant-induced blastocyst degeneration on Day 8. Hatching rates of surviving blastocysts were significantly increased by both antioxidants and beta-mercaptoethanol alone improved their mean cell numbers, which was significant in the ICM (P < 0.05). Analysis of their effect on Day 7 pi showed that both the antioxidants significantly reduced the prooxidant-induced apoptosis and beta-mercaptoethanol diminished the physiological level of apoptosis as well as it stimulated the glutathione synthesis (P < 0.05). In addition, a comparison between in vitro- and in vivo-produced embryos showed that the levels of apoptosis were similar at the same age post-insemination (morulae and blastocysts) but increased steadily with the embryonic age in in vitro ones. In conclusion, beta-mercaptoethanol and Trolox added separately from the morula stage protected embryos against oxidative stress and improved the quality of the resulting blastocysts.


Subject(s)
Antioxidants/administration & dosage , Apoptosis/drug effects , Blastocyst/physiology , Cattle/embryology , Chromans/administration & dosage , Mercaptoethanol/administration & dosage , Animals , Blastocyst/chemistry , Blastocyst/drug effects , Culture Techniques , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Female , Glutathione/analysis , Glutathione/biosynthesis , In Situ Nick-End Labeling , Morula/chemistry , Morula/drug effects , Morula/physiology , Oxidants/pharmacology , Oxidation-Reduction , Oxidative Stress , Time Factors
6.
Zygote ; 11(2): 107-18, 2003 May.
Article in English | MEDLINE | ID: mdl-12828410

ABSTRACT

Two prooxidant agents, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), a generator of free radicals in the culture medium, and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, were used to reinforce from the morula stage (day 5 post-insemination, p.i.) the oxidative stress encountered by bovine embryos in culture. Exposure to increasing concentrations of both prooxidants from the morula stage did not affect blastocyst formation but some blastocysts were found degenerated on day 8 in a dose-dependent manner (0, 0.001, 0.01, 0.1 mM AAPH gave respectively 0, 10%, 32%, 48% degeneration, while 0, 0.1, 0.2, 0.4 mM BSO led respectively to 0, 14%, 30%, 41% degeneration). Hatching rates and cell numbers of surviving blastocysts were not affected. Morulae and early blastocysts exposed from day 5 to day 6 p.i. appeared more resistant than expanded blastocysts (75-80% survival vs 20-65%; p < 0.05). Treatment with BSO significantly decreased the level of reduced glutathione in day 7 blastocysts (0.02 vs 0.42 pmol per embryo in the control) while AAPH had no effect (0.38 pmol per embryo). The proportion ofcells showing membrane lesions was increased in degenerated blastocysts from day 7.5 p.i. In AAPH-treated, but not in BSO-treated embryos, cell membrane permeabilisation seems to occur before blastocyst degeneration. DNA fragmentation evaluated by the TUNEL technique was increased in day 7 blastocysts by both prooxidants (2.8 +/- 0.4 in the control group vs 4.5 +/- 0.4 and 6.0 +/- 0.4 respectively in the AAPH- and BSO-treated groups). Addition of an inhibitor of caspase-3, DEVD-CHO, partially prevented DNA fragmentation, indicating that prooxidant treatment induced a caspase-dependent pathway of apoptosis.


Subject(s)
Amidines/pharmacology , Blastocyst/drug effects , Glutathione/drug effects , Morula/drug effects , Oxidants/pharmacology , Animals , Buthionine Sulfoximine/pharmacology , Cattle , Cell Death/drug effects , DNA Fragmentation/drug effects , Enzyme Inhibitors/pharmacology , In Situ Nick-End Labeling , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...