Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nature ; 561(7723): 374-377, 2018 09.
Article in English | MEDLINE | ID: mdl-30232421

ABSTRACT

Photoemission spectroscopy is central to understanding the inner workings of condensed matter, from simple metals and semiconductors to complex materials such as Mott insulators and superconductors1. Most state-of-the-art knowledge about such solids stems from spectroscopic investigations, and use of subfemtosecond light pulses can provide a time-domain perspective. For example, attosecond (10-18 seconds) metrology allows electron wave packet creation, transport and scattering to be followed on atomic length scales and on attosecond timescales2-7. However, previous studies could not disclose the duration of these processes, because the arrival time of the photons was not known with attosecond precision. Here we show that this main source of ambiguity can be overcome by introducing the atomic chronoscope method, which references all measured timings to the moment of light-pulse arrival and therefore provides absolute timing of the processes under scrutiny. Our proof-of-principle experiment reveals that photoemission from the tungsten conduction band can proceed faster than previously anticipated. By contrast, the duration of electron emanation from core states is correctly described by semiclassical modelling. These findings highlight the necessity of treating the origin, initial excitation and transport of electrons in advanced modelling of the attosecond response of solids, and our absolute data provide a benchmark. Starting from a robustly characterized surface, we then extend attosecond spectroscopy towards isolating the emission properties of atomic adsorbates on surfaces and demonstrate that these act as photoemitters with instantaneous response. We also find that the tungsten core-electron timing remains unchanged by the adsorption of less than one monolayer of dielectric atoms, providing a starting point for the exploration of excitation and charge migration in technologically and biologically relevant adsorbate systems.

3.
Phys Chem Chem Phys ; 18(30): 20433-42, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27402290

ABSTRACT

The adsorption of thymine, a pyrimidine based nucleobase, was studied on the (110) termination of rutile titanium dioxide in order to understand the thermal stability and gross structural parameters of the interaction between a strongly polar adsorbate and a highly corrugated transition metal oxide surface. Near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), temperature programmed XPS and temperature programmed desorption indicated the growth of a room temperature stable bilayer, which could only be removed by annealing to 450 K. The remaining first layer was remarkably robust, surviving annealing up to 550 K before undergoing N-H bond scission. The comparison to XPS of a sub-monolayer exposure of 1-methyluracil shows that the origin of the room temperature stable bilayer is not intermolecular interactions. This discovery, alongside the deprotonation of one of the first layer's pyrimidinic nitrogen atoms at room temperature, suggests that the thymine molecules in the first layer bind to the undercoordinated surface Ti atoms, and the second layer thymine molecules coordinate with the bridging oxygen atoms which protrude above the Ti surface plane on the (110) surface. The NEXAFS results indicate an almost upright orientation of the molecules in both layers, with a 30 ± 10° tilt away from the surface normal.

4.
Chem Commun (Camb) ; 52(63): 9805-8, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27417687

ABSTRACT

We demonstrate that chemically well-defined aromatic self-assembled monolayers (SAMs) bonded via a carboxylate head group to surfaces of ferromagnetic (FM = Co, Ni, Fe) transition metals can be prepared at ambient temperature in ultra-high vacuum and are thermally stable up to 350-400 K (depending on the metal). The much superior stability over thiolate-bonded SAMs, which readily decompose above 200 K, and the excellent electronic communication guaranteed by the carboxylate bonding render benzoate/FM-metal interfaces promising candidates for application in spintronics.

5.
Phys Rev Lett ; 116(25): 256801, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27391738

ABSTRACT

Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n=1) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface.

6.
Rev Sci Instrum ; 87(4): 045116, 2016 04.
Article in English | MEDLINE | ID: mdl-27131716

ABSTRACT

A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free (3)He-(4)He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples between the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.

7.
Nature ; 517(7534): 342-6, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25592539

ABSTRACT

The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations--periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology (1 as = 10(-18) seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10(-15) seconds) extreme-ultraviolet light pulses to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer--constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale.

8.
J Evol Biol ; 26(9): 2063-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23786459

ABSTRACT

Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks.


Subject(s)
Biological Evolution , Congresses as Topic/trends , Research Personnel/statistics & numerical data , Sexism/trends , Female , Humans , Research Personnel/trends
9.
Phys Rev Lett ; 109(8): 087401, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002773

ABSTRACT

We report on laser-assisted attosecond photoemission from single-crystalline magnesium. In strong contrast to the previously investigated transition metal tungsten, photoelectron wave packets originating from the localized core level and delocalized valence-band states are launched simultaneously from the solid within the experimental uncertainty of 20 as. This phenomenon is shown to be compatible with a heuristic model based on free-particle-like propagation of the electron wave packets generated inside the crystal by the attosecond excitation pulse and their subsequent interaction with the assisting laser field at the metal-vacuum interface.

10.
Phys Chem Chem Phys ; 14(26): 9397-402, 2012 Jul 14.
Article in English | MEDLINE | ID: mdl-22310486

ABSTRACT

The gas-to-solid shift of benzene is reported in the C 1s-core level regime, where the C 1s → π*-transition is investigated between 284.0 eV and 286.5 eV. Simultaneous experiments on the gas phase and condensed species are used to determine the gas-to-solid shift within an accuracy of ±5 meV. Specifically, it is observed that the vibrationally resolved C 1s → π*-transition in solid benzene is red-shifted by 55 ± 5 meV relative to the transition of the isolated molecule. Contrary to previously reported experimental data and estimates this gas-to-solid shift is somewhat smaller than the gas-to-cluster shift. It is significantly smaller than that determined in previous work on gaseous and condensed benzene. These results are discussed in terms of structural properties of molecular clusters and solid benzene by involving ab initio calculations as well as processes leading to spectral shifts of core-excited variable size matter. Finally, changes in the shape of the C 1s → π*-band upon the formation of solid benzene and benzene clusters are discussed.

11.
Rev Sci Instrum ; 82(6): 063104, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721671

ABSTRACT

We describe an apparatus for attosecond photoelectron spectroscopy of solids and surfaces, which combines the generation of isolated attosecond extreme-ultraviolet (XUV) laser pulses by high harmonic generation in gases with time-resolved photoelectron detection and surface science techniques in an ultrahigh vacuum environment. This versatile setup provides isolated attosecond pulses with photon energies of up to 140 eV and few-cycle near infrared pulses for studying ultrafast electron dynamics in a large variety of surfaces and interfaces. The samples can be prepared and characterized on an atomic scale in a dedicated flexible surface science end station. The extensive possibilities offered by this apparatus are demonstrated by applying attosecond XUV pulses with a central photon energy of ∼125 eV in an attosecond streaking experiment of a xenon multilayer grown on a Re(0001) substrate.

12.
Phys Rev Lett ; 107(2): 027801, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797640

ABSTRACT

Femtosecond charge transfer (CT) dynamics in a series of self-assembled monolayers with an oligo(phenylenethynylene) and oligo(phenyl) backbone is addressed by resonant Auger spectroscopy using the core hole clock method. The characteristic CT times are found to depend strongly on the character of the molecular orbital (MO) which mediates the CT process. This demonstrates that the efficiency and rate of CT through molecular frameworks can be controlled by resonant injection of the charge carriers into specific MOs.

13.
J Chem Phys ; 127(15): 154709, 2007 Oct 21.
Article in English | MEDLINE | ID: mdl-17949193

ABSTRACT

Using high resolution S 2p and O 1s x-ray photoelectron spectroscopies, the adsorption of SO2 and its surface bound reaction products on Ru(0001) have been investigated simultaneously while dosing SO2 and while heating the adsorbed species. SO2 is found to adsorb on Ru(0001) at 100 K molecularly in two variants as well as dissociatively and to react to SO3, SO4, SO, and S with increasing coverage. After the monolayer has been saturated, SO2 adsorbs molecularly in multilayers. When heating adsorbed SO2 from 100 K, SO, SO2, and SO4 decompose in a wide temperature range up to 305 K. In contrast SO3 is found to be stable bound to Ru(0001) up to 300 K and to disappear from the surface to below 325 K. At 550 K the surface remains with a saturated atomic sulfur and oxygen layer and some sulfur species in a second layer. Our quantitative analysis of the sulfur amount bound to the surface supports a simple desorption process only for SO4. All other species mainly or partly decompose on the surface.

14.
J Evol Biol ; 20(1): 403-14, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17210033

ABSTRACT

We combined multiple molecular markers and geometric morphometrics to revise the current taxonomy and to build a phylogenetic hypothesis for the African weakly electric fish genus Campylomormyrus. Genetic data (2039 bp DNA sequence of mitochondrial cytochrome b and nuclear S7 genes) on 106 specimens support the existence of at least six species occurring in sympatry. We were able to further confirm these species by microsatellite analysis at 16 unlinked nuclear loci and landmark-based morphometrics. We assigned them to nominal taxa by comparisons to type specimens of all Campylomormyrus species recognized so far. Additionally, we showed that the shape of the elongated trunk-like snout is the major source of morphological differentiation among them. This finding suggests that the radiation of this speciose genus might have been driven by adaptation to different food sources.


Subject(s)
Adaptation, Biological , Electric Fish/anatomy & histology , Electric Fish/genetics , Genetic Speciation , Phylogeny , Analysis of Variance , Animals , Base Sequence , Bayes Theorem , Body Weights and Measures , Congo , DNA, Mitochondrial/genetics , Electric Fish/classification , Geography , Microsatellite Repeats/genetics , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
15.
Mol Phylogenet Evol ; 39(1): 198-208, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16271299

ABSTRACT

For two sympatric species of African weakly electric fish, Campylomormyrus tamandua and Campylomormyrus numenius, we monitored ontogenetic differentiation in electric organ discharge (EOD) and established a molecular phylogeny, based on 2222bp from cytochrome b, the S7 ribosomal protein gene, and four flanking regions of unlinked microsatellite loci. In C. tamandua, there is one common EOD type, regardless of age and sex, whereas in C. numenius we were able to identify three different male adult EOD waveform types, which emerged from a single common EOD observed in juveniles. Two of these EOD types formed well supported clades in our phylogenetic analysis. In an independent line of evidence, we were able to affirm the classification into three groups by microsatellite data. The correct assignment and the high pairwise F(ST) values support our hypothesis that these groups are reproductively isolated. We propose that in C. numenius there are cryptic species, hidden behind similar and, at least as juveniles, identical morphs.


Subject(s)
Electric Fish/classification , Africa , Animals , Electric Fish/genetics , Electric Fish/physiology , Electric Organ/physiology , Electrophysiology , Female , Male , Microsatellite Repeats/genetics , Phylogeny
16.
Nature ; 436(7049): 373-6, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16034414

ABSTRACT

Dynamical processes are commonly investigated using laser pump-probe experiments, with a pump pulse exciting the system of interest and a second probe pulse tracking its temporal evolution as a function of the delay between the pulses. Because the time resolution attainable in such experiments depends on the temporal definition of the laser pulses, pulse compression to 200 attoseconds (1 as = 10(-18) s) is a promising recent development. These ultrafast pulses have been fully characterized, and used to directly measure light waves and electronic relaxation in free atoms. But attosecond pulses can only be realized in the extreme ultraviolet and X-ray regime; in contrast, the optical laser pulses typically used for experiments on complex systems last several femtoseconds (1 fs = 10(-15) s). Here we monitor the dynamics of ultrafast electron transfer--a process important in photo- and electrochemistry and used in solid-state solar cells, molecular electronics and single-electron devices--on attosecond timescales using core-hole spectroscopy. We push the method, which uses the lifetime of a core electron hole as an internal reference clock for following dynamic processes, into the attosecond regime by focusing on short-lived holes with initial and final states in the same electronic shell. This allows us to show that electron transfer from an adsorbed sulphur atom to a ruthenium surface proceeds in about 320 as.

17.
Phys Rev Lett ; 93(17): 178302, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15525132

ABSTRACT

Radiation damage of self-assembled monolayers, which are prototypes of thin organic layers and highly organized biological systems, shows a strong dependence on temperature. Two limiting cases could be identified. Reactions involving transport of single atoms and small fragments proceed nearly independent of temperature. Reactions requiring transport of heavy fragments are, however, efficiently quenched by cooling. We foresee the combined use of temperature and irradiation by electrons or photons for advanced tailoring of self-assembled monolayers on surfaces. In addition, our results have direct implications for cryogenic approaches in advanced electron and x-ray microscopy and spectroscopy of biological macromolecules and cells.


Subject(s)
Macromolecular Substances/radiation effects , Polymers/radiation effects , Biomimetic Materials/chemistry , Biomimetic Materials/radiation effects , Cold Temperature , Gold/chemistry , Macromolecular Substances/chemistry , Membrane Lipids/chemistry , Membrane Lipids/radiation effects , Polymers/chemistry , Sulfhydryl Compounds/chemistry , Temperature
18.
Heredity (Edinb) ; 93(3): 299-306, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15241451

ABSTRACT

The possibly distinct Carpathian red deer was compared genetically to other European populations. We screened 120 red deer specimens from Serbia, the Romanian lowland and the Romanian Carpathians for genetic variability using 582 bp of the mitochondrial control region and nine polymorphic nuclear microsatellite loci. The study aimed at a population genetic characterization of the Carpathian red deer, which are often treated as a distinct subspecies (Cervus elaphus montanus). The genetic integrity of the Carpathian populations was confirmed through the haplotype distribution, private alleles and genetic distances. The Carpathian red deer are thus identified as one of the few remaining natural populations of this species, deserving special attention among game and conservation biologists. The history of the populations studied, in particular the introduction of Carpathian red deer into Romanian lowland areas in the 20th century, was reflected by the genetic data.


Subject(s)
DNA, Mitochondrial/genetics , Deer/genetics , Microsatellite Repeats/genetics , Animals , Deer/classification , Genetic Variation/genetics , Genetics, Population , Haplotypes/genetics , Phylogeny
19.
Phys Rev Lett ; 89(4): 046802, 2002 Jul 22.
Article in English | MEDLINE | ID: mdl-12144494

ABSTRACT

The effect of an atomically thin Ar layer on the image-potential states on Cu(100) surfaces is studied in a joint experimental-theoretical study, allowing a detailed analysis of the interaction between a surface electron and a thin insulator layer. A microscopic theoretical description of the Ar layer is developed based on mutually polarizing Ar atoms. Account of the 3D Ar layer structure allows one to predict energies and lifetimes of the image states in excellent agreement with the observations. The Ar layer, even as thin as one monolayer, is efficiently insulating the state from the metal.

20.
Phys Rev Lett ; 88(5): 056805, 2002 Feb 04.
Article in English | MEDLINE | ID: mdl-11863766

ABSTRACT

The dependence of the inelastic lifetime of electrons in the image-potential states of Cu(100) on their momentum parallel to the surface has been studied experimentally by means of time- and angle-resolved two-photon photoemission and theoretically by evaluating the electron self-energy within the GW approximation. The pronounced decrease of the n = 1 lifetime from 40 fs at normal emission (k(parallel) = 0) to 20 fs for k(parallel) = 0.33 A(-1) cannot be accounted for by interband decay processes to bulk states. We show that intraband transitions within the image-state band give a contribution to this decrease comparable in magnitude with the interband channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...