Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 917: 170305, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278227

ABSTRACT

The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.


Subject(s)
Climate Change , Triticum , Triticum/genetics , Flowers , Genotype , Seasons
2.
New Phytol ; 225(1): 340-355, 2020 01.
Article in English | MEDLINE | ID: mdl-31469444

ABSTRACT

Awns, bristle-like structures extending from grass lemmas, provide protection against predators, contribute to photosynthesis and aid in grain dispersal. In wheat, selection of awns with minimal extension, termed awnletted, has occurred during domestication by way of loci that dominantly inhibit awn development, such as Tipped1 (B1), Tipped2 (B2), and Hooded (Hd). Here we identify and characterize the B1 gene. B1 was identified using bulked segregant RNA-sequencing of an F2 durum wheat population and through deletion mapping of awned bread wheat mutants. Functional characterization was accomplished by gene overexpression while haplotype analyses assessed B1 polymorphisms and genetic variation. Located on chromosome 5A, B1 is a C2H2 zinc finger encoding gene with ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. Constitutive overexpression of B1 in awned wheat produced an awnletted phenotype with pleiotropic effects on plant height and fertility. Transcriptome analysis of B1 overexpression plants suggests a role as transcriptional repressor, putatively targeting pathways involved in cell proliferation. Haplotype analysis revealed a conserved B1 coding region with proximal polymorphisms and supported the contention that B1 is mainly responsible for awnletted wheats globally. B1, predominantly responsible for awn inhibition in wheat, encodes a C2H2 zinc finger protein with EAR motifs which putatively functions as a transcriptional repressor.


Subject(s)
Genes, Dominant , Genetic Loci , Plant Proteins/metabolism , Repressor Proteins/metabolism , Triticum/anatomy & histology , Triticum/genetics , Zinc Fingers , Amino Acid Motifs , Bread , Cell Proliferation/genetics , Chromosome Mapping , Chromosome Segregation/genetics , Gene Expression Regulation, Plant , Genetic Pleiotropy , Haplotypes/genetics , Indoleacetic Acids/metabolism , Multigene Family , Mutation/genetics , Open Reading Frames/genetics , Plant Development/genetics , Polymorphism, Genetic
3.
Proc Natl Acad Sci U S A ; 114(15): E3149-E3158, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28351975

ABSTRACT

The cuticle of terrestrial plants functions as a protective barrier against many biotic and abiotic stresses. In wheat and other Triticeae, ß-diketone waxes are major components of the epicuticular layer leading to the bluish-white glaucous trait in reproductive-age plants. Glaucousness in durum wheat is controlled by a metabolic gene cluster at the WAX1 (W1) locus and a dominant suppressor INHIBITOR of WAX1 (Iw1) on chromosome 2B. The wheat D subgenome from progenitor Aegilops tauschii contains W2 and Iw2 paralogs on chromosome 2D. Here we identify the Iw1 gene from durum wheat and demonstrate the unique regulatory mechanism by which Iw1 acts to suppress a carboxylesterase-like protein gene, W1-COE, within the W1 multigene locus. Iw1 is a long noncoding RNA (lncRNA) containing an inverted repeat (IR) with >80% identity to W1-COE The Iw1 transcript forms a miRNA precursor-like long hairpin producing a 21-nt predominant miRNA, miRW1, and smaller numbers of related sRNAs associated with the nonglaucous phenotype. When Iw1 was introduced into glaucous bread wheat, miRW1 accumulated, W1-COE and its paralog W2-COE were down-regulated, and the phenotype was nonglaucous and ß-diketone-depleted. The IR region of Iw1 has >94% identity to an IR region on chromosome 2 in Ae. tauschii that also produces miRW1 and lies within the marker-based location of Iw2 We propose the Iw loci arose from an inverted duplication of W1-COE and/or W2-COE in ancestral wheat to form evolutionarily young miRNA genes that act to repress the glaucous trait.


Subject(s)
Ketones/metabolism , MicroRNAs/genetics , Plant Proteins/metabolism , RNA, Long Noncoding/genetics , Triticum/genetics , Waxes/metabolism , Chromosome Mapping , Chromosomes, Plant , Gene Expression Regulation, Plant , Ketones/chemistry , Phenotype , Plant Proteins/genetics , Triticum/growth & development , Triticum/metabolism , Waxes/chemistry
4.
BMC Plant Biol ; 13: 192, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24286353

ABSTRACT

BACKGROUND: The transcription factor AtMYBR1 (MYB44) is a member of the MYB family of transcription factors and is expressed throughout the plant life cycle and especially in senescing and wounded leaves. It has previously been shown to be involved in responses to abiotic stress and is regulated by phosphorylation. RESULTS: When MYBR1 was over-expressed under the control of the constitutive 35S promoter in Arabidopsis thaliana (OxMYBR1), leaf senescence was delayed. In contrast loss-of-function mybr1 plants showed more rapid chlorophyll loss and senescence. The MYBR1 promoter strongly drove ß-GLUCURONIDASE reporter gene expression in tissues immediately after wounding and many wounding/pathogenesis genes were downregulated in OxMYBR1. OxMYBR1 plants were more susceptible to injury under water stress than wildtype, which was correlated with suppression of many ABA inducible stress genes in OxMYBR1. Conversely, mybr1 plants were more tolerant of water stress and exhibited reduced rates of water loss from leaves. MYBR1 physically interacted with ABA receptor PYR1-LIKE8 (PYL8) suggesting a direct involvement of MYBR1 in early ABA signaling. MYBR1 appears to exhibit partially redundant functions with AtMYBR2 (MYB77) and double mybr1 X mybr2 mutants exhibited stronger senescence and stress related phenotypes than single mybr1 and mybr2 mutants. CONCLUSIONS: MYBR1 is a negative regulator of ABA, stress, wounding responses and blocks senescence. It appears to have a homeostatic function to maintain growth processes in the event of physical damage or stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Leaves/metabolism , Transcription Factors/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phosphorylation , Plant Leaves/physiology , Signal Transduction/genetics , Signal Transduction/physiology
5.
BMC Genomics ; 14: 140, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23448243

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are 20-21 nucleotide RNA molecules that suppress the transcription of target genes and may also inhibit translation. Despite the thousands of miRNAs identified and validated in numerous plant species, only small numbers have been identified from the oilseed crop plant Brassica napus (canola) - especially in seeds. RESULTS: Using next-generation sequencing technologies, we performed a comprehensive analysis of miRNAs during seed maturation at 9 time points from 10 days after flowering (DAF) to 50 DAF using whole seeds and included separate analyses of radicle, hypocotyl, cotyledon, embryo, endosperm and seed coat tissues at 4 selected time points. We identified more than 500 conserved miRNA or variant unique sequences with >300 sequence reads and also found 10 novel miRNAs. Only 27 of the conserved miRNA sequences had been previously identified in B. napus (miRBase Release 18). More than 180 MIRNA loci were identified/annotated using the B. rapa genome as a surrogate for the B.napus A genome. Numerous miRNAs were expressed in a stage- or tissue-specific manner suggesting that they have specific functions related to the fine tuning of transcript abundance during seed development. miRNA targets in B. napus were predicted and their expression patterns profiled using microarray analyses. Global correlation analysis of the expression patterns of miRNAs and their targets revealed complex miRNA-target gene regulatory networks during seed development. The miR156 family was the most abundant and the majority of the family members were primarily expressed in the embryo. CONCLUSIONS: Large numbers of miRNAs with diverse expression patterns, multiple-targeting and co-targeting of many miRNAs, and complex relationships between expression of miRNAs and targets were identified in this study. Several key miRNA-target expression patterns were identified and new roles of miRNAs in regulating seed development are suggested. miR156, miR159, miR172, miR167, miR158 and miR166 are the major contributors to the network controlling seed development and maturation through their pivotal roles in plant development. miR156 may regulate the developmental transition to germination.


Subject(s)
Brassica napus/genetics , Germination/genetics , MicroRNAs/genetics , Seeds/growth & development , Brassica napus/growth & development , Conserved Sequence/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , MicroRNAs/classification , MicroRNAs/isolation & purification , RNA, Plant/genetics , Sequence Analysis, RNA
6.
Methods Mol Biol ; 773: 53-64, 2011.
Article in English | MEDLINE | ID: mdl-21898249

ABSTRACT

Many seeds of coniferous species display a deep primary dormancy at maturity and require several weeks of pretreatment to produce seed populations that germinate in a vigorous and timely manner. Facilitating an efficient transition from dormancy to germination by devising improved protocols for dormancy breakage is not only important to conifer seed research, aiding in the study of the dormancy process itself, but is also of interest and applicability to commercial forest nursery operations. In the forests of British Columbia, Canada, several conifer species are well-adapted to their environment, with seeds needing to experience long durations in the moist state at cool or fluctuating temperatures. These include yellow-cedar (Callitropsis nootkatensis), western white pine (Pinus monticola), and true fir species, such as Pacific silver fir and subalpine fir (Abies amabilis and A. lasiocarpa, respectively). In this chapter, we discuss the development of new dormancy-breaking protocols for the aforementioned species that centre on the balance of several key aspects: (1) reducing the time needed to terminate dormancy in the seed population; (2) synchronicity of germination; (3) ease of use; (4) cost-effectiveness; and (5) repeatability. Where possible, any new or modified protocol should be further tested in relationship to promoting rapid seedling growth in a forest nursery greenhouse setting and after planting at natural stands. Based on the five criteria listed above, very significant improvements compared to traditional dormancy-breaking methods have been achieved for the targeted conifer species. Where tested (e.g. yellow-cedar), the modified dormancy-breaking treatments result in vigorous growth in the greenhouse and after planting at natural stands.


Subject(s)
Plant Dormancy/physiology , Seeds/growth & development , Seeds/physiology , Tracheophyta/growth & development , Tracheophyta/physiology , Abies/growth & development , Abies/physiology , Abscisic Acid/physiology , British Columbia , Canada , Chamaecyparis/growth & development , Chamaecyparis/physiology , Germination/physiology , Pinus/growth & development , Pinus/physiology , Seedlings/growth & development , Seedlings/physiology , Temperature , Trees
7.
Plant Cell ; 23(5): 1772-94, 2011 May.
Article in English | MEDLINE | ID: mdl-21571950

ABSTRACT

Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Germination/physiology , Light , Seeds/growth & development , Signal Transduction/physiology , Abscisic Acid/analysis , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Endosperm/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Germination/radiation effects , Gibberellins/metabolism , Molecular Sequence Data , Mutation , Plant Growth Regulators/analysis , Plant Growth Regulators/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Interaction Maps , RNA, Messenger/genetics , RNA, Plant/genetics , Seedlings/growth & development , Seedlings/metabolism , Seedlings/radiation effects , Seeds/metabolism , Seeds/radiation effects , Signal Transduction/radiation effects , Nicotiana/genetics , Nicotiana/metabolism , Zinc Fingers
8.
J Exp Bot ; 59(4): 765-77, 2008.
Article in English | MEDLINE | ID: mdl-18349051

ABSTRACT

Deterioration of conifer seeds during prolonged storage has a negative impact on reforestation and gene conservation efforts. Western redcedar (Thuja plicata Donn ex D. Don) is a species of tremendous value to the forest industry. The seeds of this species are particularly prone to viability losses during long-term storage. Reliable tools to assess losses in seed viability during storage and their underlying causes, as well as the development of methods to prevent storage-related deterioration of seeds are needed by the forest industry. In this work, various imaging methods and biochemical analyses were applied to study deterioration of western redcedar seeds. Seedlots that exhibited poor germination performance, i.e. those that had experienced the greatest losses of viability during prolonged storage, exhibited greater abundance of oxidized proteins, detected by protein oxidation assays, and more pronounced changes in their in vivo (13)C NMR spectra, most likely due to storage oil oxidation. The proportion of oxidized proteins also increased when seeds were subjected to accelerated ageing treatments. Detection of oxidized oils and proteins may constitute a reliable and useful tool for the forest industry.


Subject(s)
Plant Oils/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Seeds/metabolism , Thuja/physiology , Fatty Acids/chemistry , Fatty Acids/metabolism , Lipid Peroxidation , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Time Factors
9.
J Exp Bot ; 56(418): 2253-65, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15996983

ABSTRACT

High-resolution 13C MAS NMR spectroscopy was used to profile a range of primary and secondary metabolites in vivo in intact whole seeds of eight different conifer species native to North America, including six of the Pinaceae family and two of the Cupressaceae family. In vivo 13C NMR provided information on the total seed oil content and fatty acid composition of the major storage lipids in a non-destructive manner. In addition, a number of monoterpenes were identified in the 13C NMR spectra of conifer seeds containing oleoresin; these compounds showed marked variability in individual seeds of Pacific silver fir within the same seed lot. In imbibed conifer seeds, the 13C NMR spectra showed the presence of considerable amounts of dissolved sucrose presumed to play a protective role in the desiccation-tolerance of seeds. The free amino acids arginine and asparagine, generated as a result of storage protein mobilization, were detected in vivo during seed germination and early seedling growth. The potential for NMR to profile metabolites in a non-destructive manner in single conifer seeds and seed populations is discussed. It is a powerful tool to evaluate seed quality because of its ability to assess reserve accumulation during seed development or at seed maturity; it can also be used to monitor reserve mobilization, which is critical for seedling emergence.


Subject(s)
Carbon Isotopes/metabolism , Magnetic Resonance Spectroscopy/methods , Seeds/metabolism , Tracheophyta/metabolism , Monoterpenes/chemistry , Monoterpenes/metabolism , Plant Oils/analysis , Plant Oils/metabolism , Plant Proteins/metabolism
10.
Planta ; 221(1): 17-27, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15605241

ABSTRACT

Dry or fully imbibed seeds of western white pine (Pinus monticola Dougl. ex D. Don) were studied using high-resolution magnetic resonance imaging (MRI). Analyses of the dry seed revealed many of the gross anatomical features of seed structure. Furthermore, the non-invasive nature of MRI allowed for a study of the dynamics of water and oil distribution during in situ imbibition of a single seed with time-lapse chemical shift selective MRI. During soaking of the dry seed, water penetrated through the seed coat and megagametophyte. The cotyledons of the embryo (located in the chalazal end of the seed) were the first to show hydration followed by the hypocotyl and later the radicle. After penetrating the seed coat, water in the micropylar end of the seed likely also contributed to further hydration of the embryo; however, the micropyle itself did not appear to be a site for water entry into the seed. A model that describes the kinetics of the earlier stages of imbibition is proposed. Non-viable pine seeds captured with MRI displayed atypical imbibition kinetics and were distinguished by their rapid and uncontrolled water uptake. The potential of MR microimaging for detailed studies of water uptake and distribution during the soaking, moist chilling ("stratification"), and germination of conifer seeds is discussed.


Subject(s)
Pinus/physiology , Plant Oils/metabolism , Seeds/physiology , Water/metabolism , Kinetics , Magnetic Resonance Imaging/methods , Pinus/anatomy & histology , Pinus/cytology , Seeds/cytology
11.
Anal Biochem ; 329(2): 324-33, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15158494

ABSTRACT

A specific, sensitive, and accurate method for determination of abscisic acid (ABA) in plant tissues is described. The method employs reversed-phase high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry for multiple reaction monitoring of underivatized ABA and deuterated ABA analogs. Specific analogs were used to study the mechanism of ABA fragmentation, to select appropriate standards, and to identify compounds suitable for metabolic studies involving the supply of differentially labeled ABA. Limits of detection and quantification of 1.9 and 4.7 pg, respectively, were obtained over a linear calibration range of 0-1.5 ng ABA (on-column injected) using 5.8', 8', 8'-d(4) ABA as the internal standard. Accuracy and precision were within 15% for routine quality control samples. The method of standard additions, as applied to Arabidopsis thaliana seed extracts, was also used to validate the method for analysis of plant tissue samples. The utility of the method was further demonstrated by determining levels of ABA in western white pine seeds and of ABA and supplied 8', 8', 8', 9', 9', 9'-d(6) ABA in Brassica napus tissues, using 5.8', 8', 8'-d(4) ABA or 8', 8', 8'-d(3) ABA as the internal standard. Limits of quantification as low as 0.89 ng/g were achieved by optimizing the extraction procedure for each type of plant tissue.


Subject(s)
Abscisic Acid/analysis , Deuterium/metabolism , Plants/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods
12.
Planta ; 218(4): 630-9, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14663585

ABSTRACT

Western white pine (Pinus monticola) seeds exhibit deep dormancy at maturity and seed populations require several months of moist chilling to reach their uppermost germination capacities. Abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxy ABA (7'OH ABA) and ABA-glucose ester (ABA-GE), were quantified in western white pine seeds during dormancy breakage (moist chilling) and germination using an HPLC-tandem mass spectrometry method with multiple reaction monitoring and internal standards incorporating deuterium-labeled analogs. In the seed coat, ABA and metabolite levels were high in dry seeds, but declined precipitously during the pre-moist-chilling water soak to relatively low levels thereafter. In the embryo and megagametophyte, ABA levels decreased significantly during moist chilling, coincident with an increase in the germination capacity of seeds. ABA catabolism occurred via several routes, depending on the stage and the seed tissue. Moist chilling of seeds led to increases in PA and DPA levels in both the embryo and megagametophyte. Within the embryo, 7'OH ABA and ABA-GE also accumulated during moist chilling; however, 7'OH ABA peaked early in germination. Changes in ABA flux, i.e. shifts in the ratio between biosynthesis and catabolism, occurred at three distinct stages during the transition from dormant seed to seedling. During moist chilling, the relative rate of ABA catabolism exceeded ABA biosynthesis. This trend became even more pronounced during germination, and germination was also accompanied by a decrease in the ABA catabolites DPA and PA, presumably as a result of their further metabolism and/or leaching/transport. The transition from germination to post-germinative growth was accompanied by a shift toward ABA biosynthesis. Dormant imbibed seeds, kept in warm moist conditions for 30 days (after an initial 13 days of soaking), maintained high ABA levels, while the amounts of PA, 7'OH ABA, and DPA decreased or remained at steady-state levels. Thus, in the absence of conditions required to break dormancy there were no net changes in ABA biosynthesis and catabolism.


Subject(s)
Abscisic Acid/metabolism , Germination/physiology , Pinus/physiology , Seeds/physiology , Photoperiod , Pinus/growth & development , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...