Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 95(1-1): 012215, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208352

ABSTRACT

The effects of higher-order (HO) terms on the properties of the compact bright (CB) pulse described by the dispersionless nonlocal nonlinear Schrödinger (DNNLS) equation are investigated. These effects include third-order dispersion (TOD), the Raman term, and the time derivative of the pulse envelope. By means of the collective variable method, the dynamical behavior of the pulse amplitude, width, frequency, velocity, phase, and chirp during propagation is pointed out. The results indicate that the CB pulse experiences a self-frequency shift and self-steepening, respectively, in the presence of an isolated Raman term and the time derivative of the pulse envelope and acquires a velocity as the result of the TOD effect. In addition, TOD may also induce the breathing mode inside the variation of the pulse parameters when the width of the input pulse is slightly less than that of the unperturbed CB pulse. The combination of these terms, indispensable for describing ultrashort pulses, reproduces all these phenomena in the CB pulse behavior. Further, other properties are observed, namely, the pulse decay, the breathing mode even when the unperturbed CB pulse is taken as the input signal, and the attenuated pulse. These results are in good agreement with the results of the direct numerical simulations of the DNNLS equation with HO terms.

2.
Opt Lett ; 41(15): 3459-62, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27472593

ABSTRACT

Colloidal-based random lasers (RLs) are highly efficient and have been exploited in a wide range of geometries. However, in the particular case of ethanol solutions of rhodamines and TiO2 particles, the RL behavior is quite unstable due to the fast precipitation of the particles. In this Letter, specially designed amorphous TiO2 particles were synthesized by a sol-gel method, preventing the degradation of the RL for long operating lifetimes of over 105 shots. As a consequence, this modified colloidal RL allowed the observation of a clear replica-symmetry-breaking phase transition from the paramagnetic fluorescent to spin-glass RL behavior, which has not been observed in the system with nonfunctionalized TiO2 particles.

3.
Sci Rep ; 6: 27987, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27292095

ABSTRACT

Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.

SELECTION OF CITATIONS
SEARCH DETAIL
...