Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 101(2): 101409, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34953376

ABSTRACT

Salmonella Infantis has been the etiological agent of numerous foodborne outbreaks of nontyphoidal Salmonella. Consequently, there is an emergent need to mitigate Salmonella Infantis among poultry. Thus, this study evaluated the efficacy of cetylpyridinium chloride (CPC) versus peroxyacetic acid (PAA), on bone-in, skin-on chicken thighs for the reduction of Salmonella and changes in the microbiota. Exactly 100 skin-on, bone-in chicken thighs (2 trials, 0 and 24 h, k = 5, n = 5, N = 50) were inoculated with 108 CFU/mL of a nalidixic acid resistant strain of S. Infantis for an attachment of 106 CFU/g. Thighs were treated with 20 s part dips (350 mL): a no inoculum, no treatment control (NINTC); no treatment control (NTC); tap water (TW); TW+CPC; TW+PAA. Following treatment, thighs were rinsed in 150 mL of nBPW, and rinsates were collected. Rinsates were spot plated for Salmonella and aerobic bacteria (APC). Log10 transformed counts were analyzed using a mixed-effects model (random effect = trial) with means separated using Tukey's HSD (P ≤ 0.05). The genomic DNA of rinsates was extracted, and the 16S rDNA was sequenced on an Illumina MiSeq. Microbiota data were analyzed using QIIME2, with data considered significant at P ≤ 0.05 (main effects) and Q≤0.05 (pairwise differences). Treatment × time interactions were observed for both Salmonella and APC (P < 0.05). The treatment of thighs with PAA and CPC reduced Salmonella and APC in respect to the controls. Numerically, thighs treated with CPC had less Salmonella (4.29 log10CFU/g) and less APC (4.56 log10CFU/g) at 24 h than all other treatments (P > 0.05). Differences in diversity metrics were not consistently observed between treatments; however, in trial 2, the NTC treated thighs were different than those treated with CPC (P < 0.05; Q < 0.05). In both trials, ANCOM, the analysis of microbiome compositional profiles, revealed shifts at both the phylum and order levels with thighs being different in the relative abundances of Proteobacteria (P < 0.05). In conclusion, treatment of skin-on poultry parts with CPC may reduce the risk of foodborne outbreaks caused by Salmonella Infantis.


Subject(s)
Chickens , Microbiota , Animals , Cetylpyridinium/pharmacology , Food Microbiology , Salmonella , Thigh
2.
Poult Sci ; 100(12): 101476, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34710711

ABSTRACT

After being banned by the European Commission in 2018, the use of formaldehyde as a feed amendment in the United States has come into question. Therefore, this study was conducted to explore alternatives to formaldehyde, such as formic acid and monoglycerides, and their effects on poultry production. In total, 1,728 Cobb 700 broilers were randomly assigned to 96-floor pens on day of hatch (18 birds/pen). Using a randomized complete block design (4 blocks), treatments were assigned to pens with blocking based on location within the barn, with the eastern half of the barn designated for digestibility and the western half designated for production (per experiment: 8 control pens and 10 pens per treatment). All diets were based on a negative control (NC), basal diet. Dietary treatments consisted of: NC, NC + 0.25% formalin (F), NC + 0.25 and 0.50% Amasil NA (AML and AMH; 61% formic acid and 20.5% Na-formate), and NC + SILO Health 104L (SILO; mixture of monoglycerides; 0.5% from 0 to 14 d, 0.4% from 14 to 28 d, and 0.2% from 28 to 42 d). Water and feed were provided ad libitum. Performance data were collected during feed changes on d 0, 14, 28, and 42, with digestibility data collected at d 14 (2 per pen) and carcass quality (6 per pen) assessed at d 46 with a randomly selected group of broilers. A one-way ANOVA followed by Dunnett's multiple comparison, where treatments were evaluated against F were conducted using JMP 14.0 (P ≤ 0.05). Main effect of treatment was significant for performance, nutrient digestibility, and carcass quality. Differences in body weight and ADG were observed from d 14 to d 28, resulting in a trending improvement in lysine digestibility on d 14 and carcass quality on d 46 of birds fed AML and AMH in comparison to those fed F (P < 0.05). Whereas birds fed SILO had reduced digestibility of methionine on d 14 and a decrease in meat quality on d 46 in comparison to those fed F (P < 0.05). Therefore, Amasil NA at 0.25 or 0.50% may be an effective alternative to formaldehyde as a feed amendment for poultry production.


Subject(s)
Animal Feed , Chickens , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Formaldehyde , Formates , Meat , Monoglycerides , Nutrients , Random Allocation
3.
Methods Mol Biol ; 2182: 7-16, 2021.
Article in English | MEDLINE | ID: mdl-32894482

ABSTRACT

The isolation of Salmonella from feed is challenging and adjustments need to be made in order to accurately isolate the pathogen from feed. This is due to the complex nature of the feed matrix, which is both porous and fibrous. The outlined method below contains the essential components of a successful Salmonella methodology for the analysis of feed that overcomes the limitations of currently available methods.


Subject(s)
Animal Feed/microbiology , Salmonella/isolation & purification , Animals , Food Microbiology/methods
4.
J Appl Microbiol ; 130(6): 2141-2146, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33190398

ABSTRACT

AIMS: In this study, we sought to determine the incidence and diversity of Salmonella in a broad collection of commercial animal feeds collected from animal feed mills across the United States over an 11-month period and utilize CRISPR analysis to identify individual serovars. METHODS AND RESULTS: Over two independent trials, 387 feed samples from 135 different animal feed mills in the United States were screened for Salmonella. A total of 6·2% (24/387) of samples were contaminated with Salmonella, which is concordant with similar studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-typing was used to serotype Salmonella isolates, and serovars Infantis and Tennessee were the most common. CONCLUSIONS: Serogroups O:4 and O:7 were enriched in the feed samples, suggesting that these serogroups are better adapted to surviving in low moisture animal feeds. The study supports the utility of CRISPR to determine serovar type since most of the serovars identified in this study have been also isolated and identified in earlier studies using more classical serotyping methods. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to a growing body of literature concerning the Salmonella prevalence in animal feeds and highlights the need to effectively mitigate pathogens in livestock and poultry feed.


Subject(s)
Animal Feed/microbiology , Salmonella enterica/classification , Salmonella enterica/genetics , Animals , Bacterial Typing Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Bacterial , Incidence , Molecular Typing , Polymerase Chain Reaction , Salmonella Infections, Animal/epidemiology , Salmonella enterica/isolation & purification , Serogroup , Serotyping , United States/epidemiology
5.
Poult Sci ; 99(12): 6997-7003, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248616

ABSTRACT

Peroxyacetic acid (PAA) has become an important component of pathogen reduction in poultry processing, but there are potential concerns for continued exposure. The objective was to evaluate the effects of PAA and Amplon (AMP) used alone or in the combination. Bone-in tom turkey drumsticks (N = 100, n = 10, k = 5, 0 and 24 h) per study were obtained and inoculated with either nalidixic acid-resistant Salmonella Typhimurium or Salmonella Reading (64 µg/mL). The inocula were allowed to adhere to the drums at 4°C for 60 min for a final attachment of 108 and 107 cfu/g per S. Typhimurium and S. Reading, respectively. Drumsticks were treated with a no-treatment control; tap water, pH 8.5 (TW); TW+500 ppm PAA, pH 3.5 (PAA); TW+500 ppm AMP, pH 1.3 (AMP); TW + PAA + AMP (PAA + AMP). Treatments were applied as short duration dips (30 s) and allowed to drip for 2 min. After treatment, drums were stored at 4°C until microbial analyses at 0 and 24 h. Drums were rinsed in neutralizing buffered peptone water and spot plated for total aerobes and Salmonella. Bacterial counts were log10 transformed and analyzed using n-way ANOVA. All treatments reduced S. Reading on turkey legs at both 0 and 24 h (P < 0.0001; P < 0.0001). At 24 h, drums treated with PAA + AMP (3.92 log10 cfu/g) had less S. Reading than no-treatment control, TW, and AMP. Treatment by time interactions were observed for total aerobes among drums in both studies (P < 0.0001, P < 0.0001) and Salmonella among drums inoculated with S. Typhimurium (P < 0.0001). During the S. Reading and S. Typhimurium study, all treatments reduced Salmonella and total aerobes on drums. During the S. Typhimurium study, drums treated with PAA + AMP had the lowest numerical load of S. Typhimurium and total aerobes. The combination of AMP + PAA may exhibit a synergistic effect in reducing Salmonella on turkey drums, thus increasing the safety of turkey products for consumers.


Subject(s)
Food Microbiology , Meat , Nalidixic Acid , Peracetic Acid , Salmonella , Turkeys , Animals , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial/veterinary , Meat/microbiology , Nalidixic Acid/pharmacology , Peracetic Acid/pharmacology , Salmonella/drug effects , Salmonella typhimurium/drug effects
6.
Poult Sci ; 99(2): 653-659, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32029151

ABSTRACT

The microbiome has entered the vernacular of the consumer as well as broiler production and is, therefore, becoming increasingly important to poultry producers to understand. The microbiome is, by definition, compositional and relates to how the microbiological organisms within the gut inhabit that ecological niche. The gut is diverse, flexible, and data acquired requires a greater understanding of the host-microbiome axes, as well as advanced bioinformatics and ecology. There are numerous microbial populations that define the gut microbiome; however, there are even more effects that can influence its composition. As management practices vary between producers, documenting these influences is an essential component of beginning to understand the microbiome. This review targets broiler production and concatenates the currently understood compositional ecology of the broiler gastrointestinal tract microbiome as well as its influences.


Subject(s)
Chickens/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Animal Husbandry/methods , Animals
7.
Poult Sci ; 99(2): 678-688, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32029154

ABSTRACT

Chicken is globally one of the most popular food animals. However, it is also one of the major reservoirs for foodborne pathogens, annually resulting in continued morbidity and mortality incidences worldwide. In an effort to reduce the threat of foodborne disease, the poultry industry has implemented a multifaceted antimicrobial program that incorporates not only chemical compounds, but also extensive amounts of water application and pathogen monitoring. Unfortunately, the pathogen detection methods currently used by the poultry industry lack speed, relying on microbiological plate methods and molecular detection systems that take time and lack precision. In many cases, the time to data acquisition can take 12 to 24 h. This is problematic if shorter-term answers are required which is becoming more likely as the public demand for chicken meat is only increasing, leading to new pressures to increase line speed. Therefore, new innovations in detection methods must occur to mitigate the risk of foodborne pathogens that could result from faster slaughter and processing speeds. Future technology will have 2 tracks: rapid methods that are meant to detect pathogens and indicator organisms within a few hours, and long-term methods that use microbiome mapping to evaluate sanitation and antimicrobial efficacy. Together, these methods will provide rapid, comprehensive data capable of being applied in both risk-assessment algorithms and used by management to safeguard the public.


Subject(s)
Animal Husbandry/methods , Food Microbiology/methods , Poultry Diseases/diagnosis , Animals , Poultry Diseases/microbiology
8.
Poult Sci ; 95(12): 2902-2910, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27566726

ABSTRACT

Salmonella carriage is an insidious problem for the poultry industry. While most Salmonella serotypes are avirulent in poultry, these bacteria can contaminate chicken meat during processing, leading to one of the most important food safety hazards. In this study, we examined the anti-Salmonella effects of Diamond V Original XPC™ (XPC) included in the finisher diet fed to commercial broilers. On 3 occasions between day one (D1) and D20, broilers were experimentally infected with multiple antibiotic-resistant Salmonella Typhimurium. After confirming that the chicks were shedding Salmonella in the feces on D21, broiler chicks were fed a diet containing XPC (n = 57 birds; 1.25 kg/MT) or an XPC-free control diet (CON) (n = 57 birds) to D49. Fecal samples were obtained weekly and subjected to selective culture for enumerating and determining the antibiotic resistance of the Salmonella Salmonella isolates were then subjected to an in vitro virulence assay, which predicts the ability of Salmonella to cause illness in a mammalian host. Broilers were euthanized on D49 and a segment of the large intestine was removed and subjected to the same assays used for the fecal samples. When compared to the birds fed the CON diet, Salmonella fecal shedding, virulence (invasion and invasion gene expression), and antibiotic resistance were significantly decreased in birds fed XPC (5-fold, 7.5-fold, 6-fold, and 5.3-fold decreases, respectively). Birds fed XPC exhibited heavier body weight (BW) and greater BW gains than those fed the CON diet. The decrease in virulence was associated with a decreased expression of a genetic regulator of Salmonella invasion into cells (hilA), while the decrease in antibiotic resistance was due to a loss of an integron (SGI1) from the input strain. This study revealed that Original XPC™ inhibits the shedding, downstream virulence, and antibiotic resistance of Salmonella residing in broilers.


Subject(s)
Animal Feed , Bacterial Shedding , Chickens/microbiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/drug therapy , Salmonella typhimurium/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Drug Resistance, Bacterial , Feces/microbiology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...