Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; : e0405322, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747182

ABSTRACT

Woodchip bioreactors (WBRs) are used to remove nutrients, especially nitrate, from subsurface drainage. The nitrogen removal efficiency of WBRs, however, is limited by low temperatures and the availability of labile carbon. Bioaugmentation and biostimulation are potential approaches to enhance nitrate removal of WBRs under cold conditions, but their effectiveness is still unclear. Here, we clarified the effects of bioaugmentation and biostimulation on the microbiomes and nitrate removal rates of WBRs. As a bioaugmentation treatment, we inoculated WBR-borne cold-adapted denitrifying bacteria Cellulomonas cellasea strain WB94 and Microvirgula aerodenitrificans strain BE2.4 into the WBRs located at Willmar, MN, USA. As a biostimulation treatment, acetate was added to the WBRs to promote denitrification. Woodchip samples were collected from multiple locations in each WBR before and after the treatments and used for the microbiome analysis. The 16S rRNA gene amplicon sequencing showed that the microbiomes changed by the treatments and season. The high-throughput quantitative PCR for nitrogen cycle genes revealed a higher abundance of denitrification genes at locations closer to the WBR inlet, suggesting that denitrifiers are unevenly present in WBRs. In addition, a positive relationship was identified between the abundance of M. aerodenitrificans strain BE2.4 and those of norB and nosZ in the WBRs. Based on generalized linear modeling, the abundance of norB and nosZ was shown to be useful in predicting the nitrate removal rate of WBRs. Taken together, these results suggest that the bioaugmentation and biostimulation treatments can influence denitrifier populations, thereby influencing the nitrate removal of WBRs. IMPORTANCE Nitrate pollution is a serious problem in agricultural areas in the U.S. Midwest and other parts of the world. Woodchip bioreactor is a promising technology that uses microbial denitrification to remove nitrate from agricultural subsurface drainage, although the reactor's nitrate removal performance is limited under cold conditions. This study showed that the inoculation of cold-adapted denitrifiers (i.e., bioaugmentation) and the addition of labile carbon (i.e., biostimulation) can influence the microbial populations and enhance the reactor's performance under cold conditions. This finding will help establish a strategy to mitigate nitrate pollution.

2.
J Environ Qual ; 52(4): 873-885, 2023.
Article in English | MEDLINE | ID: mdl-37145888

ABSTRACT

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated. Results showed that across cropping systems, average annual P budget was 22.4 kg P ha-1 (range = -32.7 to 340.6 kg P ha-1 ), with an average uncertainty of 13.1 kg P ha-1 (range = 1.0-87.1 kg P ha-1 ). Fertilizer/manure application and crop removal were the largest P fluxes across cropping systems and, as a result, accounted for the largest fraction of uncertainty in annual budgets (61% and 37%, respectively). Remaining fluxes individually accounted for <2% of the budget uncertainty. Uncertainties were large enough that determining whether P was increasing, decreasing, or not changing was inconclusive in 39% of the budgets evaluated. Findings indicate that more careful and/or direct measurements of inputs, outputs, and stocks are needed. Recommendations for minimizing uncertainty in P budgets based on the results of the study were developed. Quantifying, communicating, and constraining uncertainty in budgets among production systems and multiple geographies is critical for engaging stakeholders, developing local and national strategies for P reduction, and informing policy.


Subject(s)
Fertilizers , Phosphorus , Manure , Uncertainty , Agriculture
3.
J Environ Qual ; 50(1): 158-171, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33345349

ABSTRACT

Relay-cropping of the novel oilseeds winter camelina (Camelina sativa L.) and pennycress (Thlaspi arvense L.) with short-season crops such as soybean [Glycine max (L.) Merr.] can provide economic and environmental incentives for adopting winter cover crop practices in the U.S. Upper Midwest. However, their ability to reduce nutrient loss in surface runoff is unknown. Accordingly, surface runoff and quality were evaluated during three seasonal phases (cover, intercrop, and soybean) over 2 yr in four cover crop-soybean treatments (pennycress, winter camelina, forage radish [Raphanus sativus L.], and winter rye [Secale cereale L.]) compared with no-till and chisel-till fallow treatments. Runoff was collected with Gerlach troughs and assessed for concentrations and loads of NO3 - -N, total mineral N, soluble reactive P (SRP), and total suspended solids (TSS). Cumulative runoff and nutrient loads were greater during the winter cover phase because of increased snow melt and freeze-thaw released nutrients from living vegetation. In contrast, cumulative TSS was greater during intercrop and soybean phases due to high-intensity rainfall events with an open soybean canopy. Average TSS loads during the intercrop phase were reduced by 75% in pennycress compared with fallow and radish treatments. During the soybean phase, average TSS, total mineral N, and SRP loads were generally elevated in cover crop treatments compared with no-till. Overwintering cover crops may contribute to mobility of nutrients solubilized from living or decomposing vegetation; however, this was balanced by their potential to reduce runoff and TSS during high-intensity spring rains.


Subject(s)
Agriculture , Glycine max , Crops, Agricultural , Nutrients , Rain
4.
Data Brief ; 24: 103914, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31080851

ABSTRACT

Three different woodchip forms were tested for bromide sorption including ground woodchip, unwashed woodchips, and washed woodchips. We used six varying initial bromide concentrations to conduct the bromide sorption experiments with each woodchip form. Data on the initial and equilibrium bromide concentrations, wood mass, and initial and equilibrium solution pH from each of the six experiments are presented. Seven bromide tracer tests were conducted on field-scale denitrification beds. In this paper, data from each of the tracer tests including variation of bromide concentration over time and hydraulic indices of the tracer tests are presented. Interpretation of the data can be found in the research article entitled "Efficacy of bromide tracers for evaluating the hydraulic performance of denitrification beds treating agricultural drainage water" [1].

5.
Front Microbiol ; 10: 635, 2019.
Article in English | MEDLINE | ID: mdl-31001220

ABSTRACT

Woodchip bioreactor technology removes nitrate from agricultural subsurface drainage by using denitrifying microorganisms. Although woodchip bioreactors have demonstrated success in many field locations, low water temperature can significantly limit bioreactor efficiency and performance. To improve bioreactor performance, it is important to identify the microbes responsible for nitrate removal at low temperature conditions. Therefore, in this study, we identified and characterized denitrifiers active at low-temperature conditions by using culture-independent and -dependent approaches. By comparative 16S rRNA (gene) analysis and culture isolation technique, Pseudomonas spp., Polaromonas spp., and Cellulomonas spp. were identified as being important bacteria responsible for denitrification in woodchip bioreactor microcosms at relatively low temperature conditions (15°C). Genome analysis of Cellulomonas sp. strain WB94 confirmed the presence of nitrite reductase gene nirK. Transcription levels of this nirK were significantly higher in the denitrifying microcosms than in the non-denitrifying microcosms. Strain WB94 was also capable of degrading cellulose and other complex polysaccharides. Taken together, our results suggest that Cellulomonas sp. denitrifiers could degrade woodchips to provide carbon source and electron donors to themselves and other denitrifiers in woodchip bioreactors at low-temperature conditions. By inoculating these denitrifiers (i.e., bioaugmentation), it might be possible to increase the nitrate removal rate of woodchip bioreactors at low-temperature conditions.

6.
J Environ Qual ; 47(4): 848-855, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30025035

ABSTRACT

Agricultural nutrient management is an issue due to N and P losses from fields and water quality degradation. Better information is needed on the risk of nutrient loss in runoff from dairy manure applied in winter. We investigated the effect of temperature on nutrient release from liquid and semisolid manure to water, and of manure quantity and placement within a snowpack on nutrient release to melting snow. Temperature did not affect manure P and NH-N release during water extraction. Manure P release, but not NH-N release, was significantly influenced by the water/manure solids extraction ratio. During snowmelt, manure P release was not significantly affected by manure placement in the snowpack, and the rate of P release decreased as application rate increased. Water extraction data can reliably estimate P release from manure during snowmelt; however, snowmelt water interaction with manure of greater solids content and subsequent P release appears incomplete compared with liquid manures. Manure NH-N released during snowmelt was statistically the same regardless of application rate. For the semisolid manure, NH-N released during snowmelt increased with the depth of snow covering it, most likely due to reduced NH volatilization. For the liquid manure, there was no effect of manure placement within the snowpack on NH-N released during snowmelt. Water extraction data can also reliably estimate manure NH-N release during snowmelt as long as NH volatilization is accounted for with liquid manures for all placements in a snowpack and semisolid manures applied on top of snow.


Subject(s)
Manure , Nitrogen/analysis , Phosphorus/analysis , Agriculture , Dairying , Seasons , Snow , Temperature
7.
J Environ Qual ; 47(4): 856-864, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30025038

ABSTRACT

Nitrogen losses from croplands contribute to impairment of water bodies. This laboratory experiment evaluated various C sources for use in a denitrifying bioreactor, a conservation practice designed to reduce N losses. The nitrate removal efficiency of candidate treatments (corn cobs [CC], corn cobs with modified coconut coir [CC+MC], corn cobs with modified coconut coir and modified macadamia shell biochar [CC+MC+MBC], wood chips [WC], wood chips with hardwood biochar [WC+BC], and wood chips with continuous sodium acetate addition [WC+A]) were tested with up-flow direction. Effluent was sampled after a repeated weekly flow regime with hydraulic residence times of 1.5, 8, 12, and 24 h. Column temperatures were 15°C for 14 wk (warm), 5°C for 13 wk (cold), and again 15°C for 7 wk (rewarm). Cumulative nitrate N load reduction was greatest for WC+A (80, 80, and 97% during the warm, cold, and rewarm runs, respectively). Corn cob treatments (CC, CC+MC, and CC+MC+MBC) had the second greatest cumulative load reductions for all three temperature experiments, and WC and WC+BC had the lowest performance under these conditions. The nitrate removal rate was optimum at the 1.5-h hydraulic residence time for the WC+A treatment: 43, 30, and 121 g N m d for the warm, cold, and rewarm runs, respectively. Furthermore, acetate addition greatly improved wood chip performance and could be used to enhance nitrate N removal under the cold and high-flow-rate conditions of springtime drainage for the north-central United States.


Subject(s)
Bioreactors , Carbon/chemistry , Denitrification , Nitrates/chemistry , Nitrogen , Temperature
8.
J Environ Qual ; 46(4): 915-920, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28783781

ABSTRACT

Nitrate-nitrogen (nitrate-N) removal rates can be increased substantially in denitrifying bioreactors with a corn ( L.) cob bed medium compared with woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a postbed chamber of inert plastic biofilm carrier (PBC) after corn cobs (CC) to extend the area of biofilm colonization, enhance nitrate-N removal, lower total organic C losses, and reduce nitrous oxide (NO) production at warm (15.5°C) and cold (1.5°C) temperatures. Treatments were CC only and CC plus PBC in series (CC-PBC). Across the two temperatures, nitrate-N load removal was 21% greater with CC-PBC than CC, with 54 and 44% of total nitrate N load, respectively. However, total organic C concentrations and loads were not significantly different between treatments. Colonization of the PBC by denitrifiers occurred, although gene abundance at the outlet (PBC) was less than at the inlet (CC). The PBC chamber increased nitrate-N removal rate and reduced cumulative NO production at 15.5°C, but not at 1.5°C. Across temperatures and treatments, NO production was 0.9% of nitrate-N removed. Including an additional chamber filled with PBC downstream from the CC bioreactor provided benefits in terms nitrate-N removal but did not achieve C removal. The presence of excess C, as well as available nitrate, in the PBC chamber suggests another unidentified limiting factor for nitrate removal.


Subject(s)
Biofilms , Bioreactors , Nitrates/chemistry , Plastics , Denitrification , Nitrogen , Zea mays
9.
PLoS One ; 11(12): e0167834, 2016.
Article in English | MEDLINE | ID: mdl-27930684

ABSTRACT

Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.


Subject(s)
Agriculture , Rain , Water Pollutants/chemistry , Fertilizers , Manure , Minnesota
10.
J Environ Qual ; 45(3): 779-87, 2016 May.
Article in English | MEDLINE | ID: mdl-27136142

ABSTRACT

Denitrifying bioreactors can be effective for removing nitrate from agricultural tile drainage; however, questions about cold springtime performance persist. The objective of this study was to improve the nitrate removal rate (NRR) of denitrifying bioreactors at warm and cold temperatures using agriculturally derived media rather than wood chips (WC). Corn ( L.) cobs (CC), corn stover (CS), barley ( L.) straw (BS), WC, and CC followed by a compartment of WC (CC+WC) were tested in laboratory columns for 5 mo at a 12-h hydraulic residence time in separate experiments at 15.5 and 1.5°C. Nitrate-N removal rates ranged from 35 to 1.4 at 15.5°C and from 7.4 to 1.6 g N m d at 1.5°C, respectively; NRRs were ranked CC > CC+WC > BS = CS > WC and CC ≥ CC+WC = CS ≥ BS > WC for 15.5 and 1.5°C, respectively. Although NRRs for CC were increased relative to WC, CC released greater amounts of carbon. Greater abundance of nitrous oxide (NO) reductase gene () was supported by crop residues than WC at 15.5°C, and CS and BS supported greater abundance than WC at 1.5°C. Production of NO relative to nitrate removal (NO) was consistently greater at 1.5°C (7.5% of nitrate removed) than at 15.5°C (1.9%). The NO was lowest in CC (1.1%) and CC-WC (0.9%) and greatest in WC (9.7%). Using a compartment of agricultural residue media in series before wood chips has the potential to improve denitrifying bioreactor nitrate removal rates, but field-scale verification is needed.


Subject(s)
Bioreactors , Nitrates/chemistry , Denitrification , Nitrous Oxide , Temperature
11.
J Environ Qual ; 44(2): 594-604, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26023978

ABSTRACT

Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentrations and loads when open surface inlets were replaced with blind (in gravel capped with 30 cm of soil) or gravel (in very coarse sand/fine gravel) inlets. In Indiana, a pair of closed depressions in adjacent fields was fitted with open inlet tile risers and blind inlets in 2005 and monitored for flow and water chemistry. Paired comparisons on a storm event basis during the growing season for years 2006 to 2013 showed that TSS loads were 40.4 and 14.4 kg ha event for tile risers and blind inlets, respectively. Total P (TP) and soluble reactive P (SRP) loads were 66 and 50% less for the blind inlets, respectively. In Minnesota, TSS and SRP concentrations were monitored for 3 yr before and after modification of 24 open inlets to gravel inlets in an unreplicated large-field on-farm study. Median TSS concentrations were 97 and 8.3 mg L and median SRP concentrations were 0.099 and 0.064 mg L for the open inlet and gravel inlet periods, respectively. Median TSS and SRP concentrations were elevated for snowmelt vs. non-snowmelt seasons for open and gravel inlets. Both replacement designs reduced suspended sediment and P concentrations and loads. The Indiana study suggests blind inlets will be effective beyond a 10-yr service life.

12.
J Environ Qual ; 43(1): 398-408, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602574

ABSTRACT

This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO-N) and ammonia (NH) losses from dairy manure applied to soil and manure N used for plant growth. Lactating dairy cows were fed diets with 16.7% CP (HighCP) or 14.8% CP (LowCP) content. Feces and urine were labeled with N by ruminal pulse-doses of NHCl. Unlabeled and N-labeled feces and urine were used to produce manure for a study with 21 lysimeters in a greenhouse. Manure application rate was 277 kg N ha. Ammonia emissions were measured at 3, 8, 23, 28, 54, and 100 h after manure application. Manure was incorporated into the soil, and a leaching event was simulated. Spring barley was planted (387 plants per m) 7 d after the leaching event and harvested at senescence. Ammonia emission rates and the contribution of urinary N to NO-N were on average about 100% greater for HighCP vs. LowCP manures. With both LowCP and HighCP manures, a greater proportion of urinary vs. fecal N was recovered in leachate NO-N. There was no difference in whole-crop barley N yields between LowCP and HighCP manures, but barley kernel N yield tended to be greater ( = 0.09) for lysimeters treated with HighCP manures. Using a unique labeling approach, this lysimeter experiment demonstrated that when applied at equal soil N application rates, manure from cows fed the HighCP diet resulted in markedly greater NH emissions and urinary N losses with leachate NO-N than manure from cows fed the LowCP diet.

13.
J Environ Qual ; 40(2): 412-20, 2011.
Article in English | MEDLINE | ID: mdl-21520748

ABSTRACT

The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.


Subject(s)
Agriculture/methods , Manure , Phosphorus/metabolism , Water Movements , Water Pollutants/metabolism , Animals , Fertilizers , Maryland , Poultry , Rain , Water Supply
14.
J Environ Qual ; 38(6): 2273-84, 2009.
Article in English | MEDLINE | ID: mdl-19875784

ABSTRACT

Phosphorus (P) losses from agricultural landscapes arise from the interaction of hydrologic, edaphic, and management factors, complicated by their spatial and temporal variability. We monitored sites along two agricultural hillslopes to assess the effects of field management and hydrology on P transfers in surface runoff at different landscape positions. Surface runoff varied by landscape position, with saturation excess runoff accounting for 19 times the volume of infiltration excess runoff at the north footslope position, but infiltration excess runoff dominated at upslope landscape positions. Runoff differed significantly between south and north footslopes, coinciding with the extent of upslope soil underlain by a fragipan. Phosphorus in runoff was predominantly in dissolved reactive form (70%), with the highest concentrations associated with upper landscape positions closest to fields serving as major sources of P. However, the largest loads of P were from the north footslope, where runoff volumes were 24 times larger than from all other sites combined. Loads of P from the north footslope appeared to be primarily chronic transfers of desorbed soil P. Although runoff from the footslope likely contributed directly to stream flow and hence to stream water quality, 27% of runoff P from the upslope sites did not connect directly with stream flow. Findings of this study will be useful for evaluating the critical source area concept and metrics such as the P-Index.


Subject(s)
Phosphorus/analysis , Water Movements , Geography , Mid-Atlantic Region , Rain , Seasons , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...