Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Clin Lab Sci ; 58(1): 17-28, 2021 01.
Article in English | MEDLINE | ID: mdl-32552254

ABSTRACT

The lack of specific clinical symptoms for patients in the early stage of rheumatoid arthritis (RA) has created strong interest in the laboratory diagnosis of RA. The main laboratory markers of RA, rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs), can be found in patients with other pathologies and in healthy donors. Even today, there is no single laboratory test that can diagnosis RA with high sensitivity and specificity. To improve the diagnosis and treatment of RA, alternative biomarkers, including 14-3-3η protein, connective tissue growth factor (CTGF), antibodies against PAD4, antibodies against BRAF, and anti-acetylated and anti-carbamylated protein antibodies have been studied extensively. The use of a multiple biomarker approach, the simultaneous measurement of a set of biomarkers, is an alternative strategy for the diagnosis of RA and for predicting the therapeutic effect of biological disease-modifying antirheumatic drugs (DMARDs). However, despite the large number of studies, only a few biomarker combinations have been validated and can be applied in clinical practice. In this article, results of studies focused on the multiple biomarker approach (both multiplex and combined single-analyte assays) to diagnose RA and to predict response to biological drug therapy are reviewed. Additionally, general factors limiting the use of multiplex analysis in RA diagnostics and therapy are discussed.


Subject(s)
Arthritis, Rheumatoid , Rheumatoid Factor , Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Autoantibodies , Biomarkers , Humans
2.
Clin Chem Lab Med ; 58(10): 1611-1622, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32324152

ABSTRACT

Glycosylation is one of the most common posttranslational modifications of proteins and lipids. In the case of tumors, cell transformation accompanied by aberrant glycosylation results in the expression of tumor-associated glycans that promote tumor invasion. As part of the innate immunity, anti-glycan antibodies recognize tumor-associated glycans, and these antibodies can be present in the bloodstream in the early stages of cancer. Recently, anti-glycan antibody profiles have been of interest in various cancer studies. Novel advantages in the field of analytical techniques have simplified the analysis of anti-glycan antibodies and made it easier to have more comprehensive knowledge about their functions. One of the robust approaches for studying anti-glycan antibodies engages in microarray technology. The analysis of glycan microarrays can provide more expanded information to simultaneously specify or suggest the role of antibodies to a wide variety of glycans in the progression of different diseases, therefore making it possible to identify new biomarkers for diagnosing cancer and/or the state of the disease. Thus, in this review, we discuss antibodies to various glycans, their application for diagnosing cancer and one of the most promising tools for the investigation of these molecules, microarrays.


Subject(s)
Antibodies, Neoplasm/blood , Biomarkers, Tumor/blood , Microarray Analysis/methods , Neoplasms/blood , Polysaccharides/immunology , Glycosylation , Humans , Neoplasms/immunology , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Processing, Post-Translational , Structure-Activity Relationship
3.
World Allergy Organ J ; 11(1): 35, 2018.
Article in English | MEDLINE | ID: mdl-30524646

ABSTRACT

BACKGROUND: In addition to allergen-specific IgE (sIgE), allergen-specific IgG4 (sIgG4) antibodies are also involved in the immune response resulting from an allergen exposure. The aim of our study was to analyze sIgE and sIgG4 patterns in the most common allergic disorders: bronchial asthma, upper airway disorders and atopic dermatitis. METHODS: In this study a screening analysis of blood serum samples from 673 patients aged from 6 months to 17 years with different allergic entities was performed on microarrays. sIgE and sIgG4 levels to the most common allergens were estimated. RESULTS: sIgE response to most pollen allergens is more strongly associated with respiratory diseases than with atopic dermatitis, while sIgE responses to cat and dog dander are more strongly associated with bronchial asthma than with atopic dermatitis and upper airway disorders such as rhinosinusitis and allergic rhinitis. A lower prevalence of sIgG4 to pollen allergens in cases of atopic dermatitis is observed compared with that in cases of asthma and upper airway disorders. Analyzing all the allergic disorders, one can see that sIgG4 response to inhalant allergens is strongly associated with sensitization to the corresponding allergen. CONCLUSION: Allergen-specific IgE and IgG4 patterns that are relevant to concrete allergic diseases differ by sIgE and sIgG4 prevalences to defined allergens.

4.
PLoS One ; 13(3): e0194775, 2018.
Article in English | MEDLINE | ID: mdl-29566093

ABSTRACT

The immunological profiles of human specific IgE (sIgE) and specific IgG4 (sIgG4) vary by genetic predisposition, living conditions in different geographical locations and patient's age. The aim of our study was to analyze sIgE and sIgG4 patterns and their age-dependent changes in patients from the Moscow region. For identifying sIgE and sIgG4 profiles the blood samples from 513 patients aged 6 months to 17 years who were showing symptoms of allergic diseases were analyzed using microarrays containing 31 allergens. The highest sIgE prevalence was observed for birch pollen (32%) among pollen allergens, cat dander (24%) among indoor allergens, and egg whites (21%) among food allergens. The most common sIgG4 response was developed toward egg whites (80% of patients). Age-related elevation was identified for patients with increased sIgE to pollen allergens and indoor allergens (cat or dog dander and house dust mites). For each allergen, the proportion of cases with significant levels of sIgG4 appeared to increase with patients' age. The data on allergen-specific sIgE and sIgG4 prevalence show both general trends and some local special aspects that are indicative for the Moscow region. This information should be useful in terms of epidemiology of allergic diseases.


Subject(s)
Allergens/analysis , Food Hypersensitivity/diagnosis , Food Hypersensitivity/epidemiology , Respiratory Hypersensitivity/diagnosis , Respiratory Hypersensitivity/epidemiology , Adolescent , Allergens/classification , Bronchial Provocation Tests/methods , Bronchial Provocation Tests/statistics & numerical data , Child , Child, Preschool , Female , Food Hypersensitivity/immunology , Food Hypersensitivity/metabolism , Humans , Infant , Infant, Newborn , Male , Microarray Analysis , Moscow/epidemiology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Russia/epidemiology
5.
Clin Proteomics ; 14: 1, 2017.
Article in English | MEDLINE | ID: mdl-28077935

ABSTRACT

BACKGROUND: sIgE and sIgG4 detection is necessary for more accurate and effective type I hypersensitivity diagnostics and the estimation of disease development. Typically, the analyses of these antibodies are performed separately with the help of various specialized systems. The aim of this study was to develop a microarray-based method for the simultaneous quantitative detection of sIgE and sIgG4 to the most common allergens in a single sample. METHODS: A quantitative method for the simultaneous detection of sIgE and sIgG4 was developed based on the technology of hydrogel microchips previously designed at Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (EIMB RAS). The microarray contained gel pads with immobilized allergens and gel pads that allow for the obtaining of sIgE and sIgG4 internal calibration curves for each allergen during the assay. The possibility of the simultaneous detection of sIgE and sIgG4 was developed using the corresponding Cy5 and Cy3 fluorescent dyes. RESULTS: The multiplex immunoassay method using hydrogel microarrays developed in this study allowed the quantitative detection of sIgE and sIgG4 to 31 allergens from different groups in a single assay. A comparison of the microarray with the existing plate-based analogues (i.e., ALLERG-O-LIQ and sIgG4 ELISA) was performed by analysing 152 blood serum samples and by evaluating Pearson correlation coefficients, ROC analysis, and Passing-Bablok linear regression results. CONCLUSION: The implementation of this method in allergy diagnostics will provide the possibility of simultaneously performing primary patient screening and obtaining additional information concerning the severity of the allergies and the choice of an appropriate therapy.

6.
Article in English | MEDLINE | ID: mdl-26973700

ABSTRACT

BACKGROUND: Immunological test systems for diagnostics of type I hypersensitivity involve the following types of antigens: whole allergen extracts, individual highly purified proteins and their recombinant analogues. The goal of this study was to compare the results obtained with whole allergen extracts (birch pollen, cat dander, and timothy grass pollen) and their respective recombinant proteins in biochip-based immunoassay. METHODS: Multiplex fluorescent immunoassay of 139 patients' blood serum samples was carried out using biological microchips (biochips). sIgE concentrations for the chosen allergens and their recombinant components were measured. ROC analysis was used for comparison of the results and determination of diagnostic accuracy. RESULTS: The results for the birch pollen extract and its recombinant allergens have shown that the diagnostic accuracy of the methods utilizing the whole allergen extract, its major component Bet v 1 and the combination of major and minor components (Bet v 1 and Bet v 2) was the same. Values for diagnostic accuracy for the cat dander extract and its major recombinant component Fel d 1 were equal. In contrast with birch pollen and cat dander allergens, using of recombinant components of timothy grass pollen (Phl p 1, Phl p 5, Phl p 7 and Phl p 12) did not allow reaching the diagnostic accuracy of using natural extract. CONCLUSIONS: Multiplex analysis of samples obtained from patients with allergy to birch pollen and cat dander using biological microchips has shown that comparable accuracy was observed for the assay with natural extracts and recombinant allergens. In the case of timothy grass allergen, using the recombinant components may be insufficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...