Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 130(2): 403-417, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27913832

ABSTRACT

KEY MESSAGE: General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data. Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.


Subject(s)
Genetic Variation , Hybrid Vigor , Hybridization, Genetic , Plant Breeding , Zea mays/genetics , Genetics, Population , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide
2.
Biochimie ; 88(11): 1733-42, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16996193

ABSTRACT

In higher plants and some fungi, heavy metals induce the synthesis of chelating peptides known as phytochelatins (PCs). They are characterized by the general structure (gamma-Glu-Cys)n-Gly, but in some plant species, the C-terminal glycine can be replaced by serine, glutamine, glutamate or alanine, leading to iso-phytochelatins (iso-PCs). Although the distribution of iso-PCs is considered to differ from one species to another, we previously showed that Arabidopsis thaliana (A. thaliana) cells are able to synthesize most PC-related peptides (PCs and iso-PCs) described in the literature. We also observed an accumulation of the dipeptide gamma-glutamylcysteine (gamma-EC) when cadmium (Cd) (200 microM) was added to the culture medium, suggesting that either glutathione synthetase or glycine availability could be a limiting factor for the biosynthesis of PC-related peptides. In this context, the aim of the present work was to seek new insights into the regulation of PC synthesis by performing metabolic profiling using liquid chromatography-mass spectrometry. The levels of PC-related peptides and their precursors were measured in A. thaliana cells following Cd exposure. A range of doses (0, 50, 200 and 400 microM CdNO3) and kinetic studies (from 1 to 48 h) showed a dose threshold (50 microM CdNO3) and a lag time between the appearance of PCs and iso-PCs concomitant with the gamma-EC accumulation induced by Cd, occurring at cadmium concentrations above 50 microM. This accumulation was suppressed by supplementation of the culture medium with 25 mM glycine. Glycine supplementation had a limited impact on the concentrations of glutathione and PCs whereas the levels of most iso-PCs were significantly increased. Taken together, these results indicate that GSH is involved in the biosynthesis of the iso-PCs in vivo, and that the biosynthesis of PC-related peptides is limited by the availability of glycine in the presence of high cadmium concentrations.


Subject(s)
Arabidopsis Proteins/biosynthesis , Arabidopsis/metabolism , Glutathione/biosynthesis , Metals, Heavy/metabolism , Culture Media , Glutathione/chemistry , Glutathione/metabolism , Kinetics , Nitrogen/metabolism , Phytochelatins , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...