Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 136(11): 219, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816986

ABSTRACT

KEY MESSAGE: An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.


Subject(s)
Hybrid Vigor , Zea mays , Chromosome Mapping/methods , Zea mays/genetics , Genome-Wide Association Study , Quantitative Trait Loci , Phenotype
2.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35150258

ABSTRACT

Genetic admixture, resulting from the recombination between structural groups, is frequently encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate substantial nonadditive genetic variance and contrasted levels of inbreeding which can impact trait variation. This study aimed at testing recent methodological developments for the modeling of inbreeding and nonadditive effects in order to increase prediction accuracy in admixed populations. Using two maize (Zea mays L.) populations of hybrids admixed between dent and flint heterotic groups, we compared a suite of five genomic prediction models incorporating (or not) parameters accounting for inbreeding and nonadditive effects with the natural and orthogonal interaction approach in single and multienvironment contexts. In both populations, variance decompositions showed the strong impact of inbreeding on plant yield, height, and flowering time which was supported by the superiority of prediction models incorporating this effect (+0.038 in predictive ability for mean yield). In most cases dominance variance was reduced when inbreeding was accounted for. The model including additivity, dominance, epistasis, and inbreeding effects appeared to be the most robust for prediction across traits and populations (+0.054 in predictive ability for mean yield). In a multienvironment context, we found that the inclusion of nonadditive and inbreeding effects was advantageous when predicting hybrids not yet observed in any environment. Overall, comparing variance decompositions was helpful to guide model selection for genomic prediction. Finally, we recommend the use of models including inbreeding and nonadditive parameters following the natural and orthogonal interaction approach to increase prediction accuracy in admixed populations.


Subject(s)
Inbreeding , Zea mays , Genotype , Hybridization, Genetic , Models, Genetic , Phenotype , Plant Breeding , Zea mays/genetics
3.
Plants (Basel) ; 9(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660108

ABSTRACT

Heterosis (hybrid vigour) is a universal phenomenon of crucial agro-economic and evolutionary importance. We show that the most common heterosis coefficients do not properly measure deviation from additivity because they include both a component accounting for "real" heterosis and a term that is not related to heterosis, since it is derived solely from parental values. Therefore, these coefficients are inadequate whenever the aim of the study is to compare heterosis levels between different traits, environments, genetic backgrounds, or developmental stages, as these factors may affect not only the level of non-additivity, but also parental values. The only relevant coefficient for such comparisons is the so-called "potence ratio". Because most heterosis studies consider several traits/stages/environmental conditions, our observations support the use of the potence ratio, at least in non-agronomic contexts, because it is the only non-ambiguous heterosis coefficient.

4.
Front Genet ; 9: 159, 2018.
Article in English | MEDLINE | ID: mdl-29868111

ABSTRACT

Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.

5.
Metallomics ; 6(4): 809-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549117

ABSTRACT

Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.


Subject(s)
Arabidopsis/metabolism , Iron/metabolism , Plant Roots/metabolism , Uranium/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Models, Biological , Plant Roots/genetics , Signal Transduction , Uranium/analysis
6.
Theor Appl Genet ; 120(2): 463-73, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19916003

ABSTRACT

The genetic and molecular approaches to heterosis usually do not rely on any model of the genotype-phenotype relationship. From the generalization of Kacser and Burns' biochemical model for dominance and epistasis to networks with several variable enzymes, we hypothesized that metabolic heterosis could be observed because the response of the flux towards enzyme activities and/or concentrations follows a multi-dimensional hyperbolic-like relationship. To corroborate this, we used the values of systemic parameters accounting for the kinetic behaviour of four enzymes of the upstream part of glycolysis, and simulated genetic variability by varying in silico enzyme concentrations. Then we "crossed" virtual parents to get 1,000 hybrids, and showed that best-parent heterosis was frequently observed. The decomposition of the flux value into genetic effects, with the help of a novel multilocus epistasis index, revealed that antagonistic additive-by-additive epistasis effects play the major role in this framework of the genotype-phenotype relationship. This result is consistent with various observations in quantitative and evolutionary genetics, and provides a model unifying the genetic effects underlying heterosis.


Subject(s)
Epistasis, Genetic , Hybrid Vigor/genetics , Models, Genetic , Computer Simulation , Enzymes/metabolism , Genotype , Glycolysis/genetics , Kinetics
7.
Proteomics ; 6(7): 2180-98, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16502469

ABSTRACT

To get more insight into plant cell response to cadmium (Cd) stress, both proteomic and metabolomic "differential display" analyses were performed on Arabidopsis thaliana cells exposed to different concentrations of the toxic chemical. After a 24 h treatment, soluble proteins extracted from untreated and treated cells were separated by 2-D-PAGE and image analyses were performed to quantify and compare protein levels. Proteins up- and down-regulated in response to Cd were identified by MS and mapped into specific metabolic pathways and cellular processes, highlighting probable activation of the carbon, nitrogen, and sulfur metabolic pathways. For some of these proteins, Northern blot and RT-PCR analyses were performed to test transcript accumulation in response to Cd. In parallel, metabolite profiling analyses by LC coupled to ESI MS were initiated to better characterize the metabolic adaptation to the chemical stress. This study revealed that the main variation at the metabolite level came from the presence of six different families of phytochelatins, in A. thaliana cells treated with Cd, whose accumulation increases with Cd concentrations. Taken together these data provide an overview of the molecular and cellular changes elicited by Cd exposure.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/metabolism , Cadmium/toxicity , Proteomics , Amino Acids/metabolism , Antioxidants/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/metabolism , Blotting, Northern , Cells, Cultured , Down-Regulation/drug effects , Glutathione/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation/drug effects
8.
Biochem J ; 396(2): 317-26, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16460310

ABSTRACT

Explicit modelling of metabolic networks relies on well-known mathematical tools and specialized computer programs. However, identifying and estimating the values of the very numerous enzyme parameters inherent to the models remain a tedious and difficult task, and the rate equations of the reactions are usually not known in sufficient detail. A way to circumvent this problem is to use 'non-mechanistic' models, which may account for the behaviour of the systems with a limited number of parameters. Working on the first part of glycolysis reconstituted in vitro, we showed how to derive, from titration experiments, values of effective enzyme activity parameters that do not include explicitly any of the classical kinetic constants. With a maximum of only two parameters per enzyme, this approach produced very good estimates for the flux values, and enabled us to determine the optimization conditions of the system, i.e. to calculate the set of enzyme concentrations that maximizes the flux. This fast and easy method should be valuable in the context of integrative biology or for metabolic engineering, where the challenge is to deal with the dramatic increase in the number of parameters when the systems become complex.


Subject(s)
Metabolism , Models, Theoretical , Algorithms , Computer Simulation , Glycolysis , In Vitro Techniques , Kinetics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...