Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6661): 985-990, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37535759

ABSTRACT

The destructive 2023 moment magnitude (Mw) 7.8-7.7 earthquake doublet ruptured multiple segments of the East Anatolian Fault system in Turkey. We integrated multiscale seismic and space-geodetic observations with multifault kinematic inversions and dynamic rupture modeling to unravel the events' complex rupture history and stress-mediated fault interactions. Our analysis reveals three subshear slip episodes during the initial Mw 7.8 earthquake with a delayed rupture initiation to the southwest. The Mw 7.7 event occurred 9 hours later with a larger slip and supershear rupture on its western branch. Mechanically consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths and require a heterogeneous background stress. Our results highlight the importance of combining near- and far-field observations with data-driven and physics-based models for seismic hazard assessment.

2.
Nature ; 618(7966): 761-766, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286605

ABSTRACT

Hydrologic loads can stimulate seismicity in the Earth's crust1. However, evidence for the triggering of large earthquakes remains elusive. The southern San Andreas Fault (SSAF) in Southern California lies next to the Salton Sea2, a remnant of ancient Lake Cahuilla that periodically filled and desiccated over the past millennium3-5. Here we use new geologic and palaeoseismic data to demonstrate that the past six major earthquakes on the SSAF probably occurred during highstands of Lake Cahuilla5,6. To investigate possible causal relationships, we computed time-dependent Coulomb stress changes7,8 due to variations in the lake level. Using a fully coupled model of a poroelastic crust9-11 overlying a viscoelastic mantle12,13, we find that hydrologic loads increased Coulomb stress on the SSAF by several hundred kilopascals and fault-stressing rates by more than a factor of 2, which is probably sufficient for earthquake triggering7,8. The destabilizing effects of lake inundation are enhanced by a nonvertical fault dip14-17, the presence of a fault damage zone18,19 and lateral pore-pressure diffusion20,21. Our model may be applicable to other regions in which hydrologic loading, either natural8,22 or anthropogenic1,23, was associated with substantial seismicity.

3.
Nature ; 531(7592): 92-6, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26935698

ABSTRACT

The March 2011 Tohoku-oki earthquake was only the second giant (moment magnitude Mw ≥ 9.0) earthquake to occur in the last 50 years and is the most recent to be recorded using modern geophysical techniques. Available data place high-resolution constraints on the kinematics of earthquake rupture, which have challenged prior knowledge about how much a fault can slip in a single earthquake and the seismic potential of a partially coupled megathrust interface. But it is not clear what physical or structural characteristics controlled either the rupture extent or the amplitude of slip in this earthquake. Here we use residual topography and gravity anomalies to constrain the geological structure of the overthrusting (upper) plate offshore northeast Japan. These data reveal an abrupt southwest-northeast-striking boundary in upper-plate structure, across which gravity modelling indicates a south-to-north increase in the density of rocks overlying the megathrust of 150-200 kilograms per cubic metre. We suggest that this boundary represents the offshore continuation of the Median Tectonic Line, which onshore juxtaposes geological terranes composed of granite batholiths (in the north) and accretionary complexes (in the south). The megathrust north of the Median Tectonic Line is interseismically locked, has a history of large earthquakes (18 with Mw > 7 since 1896) and produced peak slip exceeding 40 metres in the Tohoku-oki earthquake. In contrast, the megathrust south of this boundary has higher rates of interseismic creep, has not generated an earthquake with MJ > 7 (local magnitude estimated by the Japan Meteorological Agency) since 1923, and experienced relatively minor (if any) co-seismic slip in 2011. We propose that the structure and frictional properties of the overthrusting plate control megathrust coupling and seismogenic behaviour in northeast Japan.

4.
Science ; 338(6104): 250-2, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23066078

ABSTRACT

The Altiplano-Puna ultralow-velocity zone in the central Andes, South America, is the largest active magma body in Earth's continental crust. Space geodetic observations reported an uplift in the Altiplano-Puna proper at a rate of ~10 mm/year; however, the nature of the inferred inflation source has been uncertain. We present data showing that the uplift has persisted at a nearly constant rate over the past two decades, and is surrounded by a broad zone of subsidence. We show that the ongoing uplift and peripheral subsidence may result from a large mid-crustal diapir fed by partial melt from the Altiplano-Puna Magma Body.

5.
Nature ; 488(7413): 638-41, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22932388

ABSTRACT

Laboratory studies of frictional properties of rocks at slip velocities approaching the seismic range (∼0.1-1 m s(-1)), and at moderate normal stresses (1-10 MPa), have revealed a complex evolution of the dynamic shear strength, with at least two phases of weakening separated by strengthening at the onset of wholesale melting. The second post-melting weakening phase is governed by viscous properties of the melt layer and is reasonably well understood. The initial phase of extreme weakening, however, remains a subject of much debate. Here we show that the initial weakening of gabbro is associated with the formation of hotspots and macroscopic streaks of melt ('melt welts'), which partially unload the rest of the slip interface. Melt welts begin to form when the average rate of frictional heating exceeds 0.1-0.4 MW m(-2), while the average temperature of the shear zone is well below the solidus (250-450 °C). Similar heterogeneities in stress and temperature are likely to occur on natural fault surfaces during rapid slip, and to be important for earthquake rupture dynamics.

6.
Nature ; 441(7096): 968-71, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16791192

ABSTRACT

The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times (for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7-10 metres, comparable to the maximum co-seismic offset ever documented on the fault. Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

7.
Nature ; 435(7040): 295-9, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15902247

ABSTRACT

Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.

8.
Science ; 297(5588): 1858-62, 2002 Sep 13.
Article in English | MEDLINE | ID: mdl-12228714

ABSTRACT

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...