Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 11(6)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067343

ABSTRACT

Motor preparation, based on one's goals and expectations, allows for prompt reactions to stimulations from the environment. Proactive and reactive inhibitory mechanisms modulate this preparation and interact to allow a flexible control of responses. In this study, we investigate these two control mechanisms with an ad hoc cued Go/NoGo Simon paradigm in a within-subjects design, and by measuring subliminal motor activities through electromyographic recordings. Go cues instructed participants to prepare a response and wait for target onset to execute it (Go target) or inhibit it (NoGo target). Proactive inhibition keeps the prepared response in check, hence preventing false alarms. Preparing the cue-coherent effector in advance speeded up responses, even when it turned out to be the incorrect effector and reactive inhibition was needed to perform the action with the contralateral one. These results suggest that informative cues allow for the investigation of the interaction between proactive and reactive action inhibition. Partial errors' analysis suggests that their appearance in compatible conflict-free trials depends on cue type and prior preparatory motor activity. Motor preparation plays a key role in determining whether proactive inhibition is needed to flexibly control behavior, and it should be considered when investigating proactive/reactive inhibition.

2.
Cortex ; 120: 443-456, 2019 11.
Article in English | MEDLINE | ID: mdl-31476554

ABSTRACT

In experimental settings, most overt behavioral errors are consciously perceived. They are, however, only the tip of the iceberg, and electromyographic recording of the muscles involved in the response reveals subthreshold incorrect response activations. Although they are all efficiently corrected, such "partial errors" are poorly consciously detected. Electroencephalographic recordings (CSD estimate), revealed the sequence of cortical activities that lead, or not, to conscious detection. Besides medio-prefrontal activities related to action monitoring and error detection, the motor command sent by the primary motor cortices also differed between detected and undetected partial errors: while it develops identically, it is stopped earlier for the latter than for the former, suggesting a critical role in partial error detection. Second, the analysis of the "Error positivity" - Pe, classically linked to error awareness, confirmed its absence just after partial errors, be they detected or not. However, a Pe occurs after the corrective response of partial errors that were detected, suggesting that we become aware of our partial errors only after their correction. The implication of these results for the link between consciousness and cognitive control are discussed.


Subject(s)
Evoked Potentials/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Adult , Awareness/physiology , Electroencephalography , Electromyography , Female , Humans , Male , Reaction Time/physiology , Young Adult
3.
Front Psychol ; 10: 340, 2019.
Article in English | MEDLINE | ID: mdl-30846954

ABSTRACT

Human behavior must be flexible to respond to environmental and social demands, and to achieve these goals, it requires control. For instance, inhibitory control is used to refrain from executing unwanted or anticipated responses to environmental stimuli. When inhibitory mechanisms are inefficient due to some pathological conditions, such as attention-deficit hyperactivity disorder (ADHD) or pathological gambling, patients show a reduced capability of refraining from executing actions. When planning to execute an action, various inhibitory control mechanisms are activated to prevent the unwanted release of impulses and to ensure that the correct response is produced. A great body of research has used various cognitive tasks to isolate one or more components of inhibitory control (e.g., response selectivity) and to investigate their neuronal underpinnings. However, inter-individual differences in behavior are rarely properly considered, although they often represent a considerable source of noise in the data. In the present review, we will address this issue using the specific case of action inhibition, presenting the results of studies that coupled the so-called Go/NoGo paradigm with non-invasive brain stimulation to directly test the effects of motor inhibition on the excitability of the corticospinal system (CSE). Motor preparation is rarely measured in action inhibition studies, and participants' compliancy to the task's requests is often assumed rather than tested. Single pulse transcranial magnetic stimulation (TMS) is a powerful tool to directly measure CSE, whose responsivity depends on both excitatory and inhibitory processes. However, when motor preparation is not measured and the task design does not require participants to prepare responses in advance, fluctuations in CSE levels can be mistaken for active inhibition. One way to isolate motor preparation is to use a carefully designed task that allows to control for excessive variability in the timing of activation of inhibitory control mechanisms. Here, we review single pulse TMS studies that have used variants of the Go/NoGo task to investigate inhibitory control functions in healthy participants. We will identify the specific strategies that likely induced motor preparation in participants, and their results will be compared to current theories of action inhibition.

4.
Front Psychol ; 9: 1891, 2018.
Article in English | MEDLINE | ID: mdl-30364148

ABSTRACT

In everyday life, environmental cues are used to predict and respond faster to upcoming events. Similarly, in cueing paradigms (where, on cued trials, a cued target requires a speeded response), cues are known to speed up response times (RTs), suggesting that motor preparation has occurred. However, some studies using short cue-target intervals (<300 ms) have found slower RTs on cued, compared to uncued trials (namely, the "paradoxical warning cost"). One explanation of this paradoxical effect is proactive inhibition, a motor gating mechanism that prevents false alarms, also called "the default state of executive control." Alternative hypotheses claim that, with such short cue-target delays, participants cannot fully prepare the motor response, thus producing slower RTs. In studies of action inhibition, it is often assumed that participants prepare a response on each trial, a prerequisite to induce and measure (proactive) motor inhibition. In this study, we psychophysically manipulated stimulus' duration in a simple RT task, and measured a duration threshold at which participants responded on time on 80% of the trials. When participants are tested at their stimulus' duration threshold, they are more likely to prepare the motor response on each trial. Furthermore, we directly measured participants' readiness to respond by recording transcranial-magnetic stimulation (TMS)-elicited motor evoked potentials (MEPs), a direct measure of corticospinal excitability. Participants performed cued and uncued trials on a simple RT task with short cue-target intervals. We expected lower MEPs' amplitude on cued than uncued trials with short cue-target intervals, as it would be predicted by the proactive inhibition account. However, when conditions are equated so that motor preparation is induced both under cued and uncued trials, the paradoxical warning cost disappears, as RTs were always faster on cued than uncued trials. Moreover, MEPs recorded from the task-relevant muscle were never suppressed at target onset compared to baseline, a result that does not support the proactive inhibition hypothesis. These results suggest that proactive inhibition is not active by default and that its activation depends on motor preparation.

5.
Brain Stimul ; 10(3): 596-603, 2017.
Article in English | MEDLINE | ID: mdl-28057451

ABSTRACT

BACKGROUND: Action inhibition is a complex decision process that can be triggered by external factors (exogenous) or internal decisions (endogenous). While the neuronal underpinnings of exogenous action inhibition have been extensively investigated, less is known about the brain areas responsible for endogenous action inhibition. OBJECTIVE: We used inhibitory repetitive transcranial magnetic stimulation (rTMS) to test the causal role of two brain areas, the left dorsal fronto-median Cortex (dFMC) and the right Inferior Frontal Cortex (rIFC) in exogenous and endogenous action inhibition. METHODS: The exogenous condition was a modified version of the Go/NoGo paradigm, where a green stimulus served as a cue to perform an action (a button press, Exogenous-Go), while a magenta stimulus indicated that action should be withhold (Exogenous-NoGo). Crucially, for the endogenous condition we psychophysically generated a shade of colour that participants randomly categorized as green or magenta. This unique stimulus, randomly intermixed with green and magenta stimuli, forced participants to perform an endogenous (internally-driven) choice to either execute or inhibit the action. RESULTS: In the endogenous condition, at baseline participants executed the action on half the trials; however, after 1-Hz rTMS over the dFMC they responded significantly more frequently, indicating a reduced response inhibition. The effect was selective for the dFMC stimulation and sustained in time. Moreover, no significant effects were found in the exogenous condition. CONCLUSIONS: These results support the causal role of the left dFMC in endogenous action inhibition and, more generally, the notion of separate brain circuits for endogenous and exogenous action inhibition.


Subject(s)
Brain Mapping , Choice Behavior , Frontal Lobe/physiology , Neural Inhibition , Adult , Evoked Potentials , Female , Humans , Male , Random Allocation , Transcranial Magnetic Stimulation
6.
Soc Cogn Affect Neurosci ; 11(9): 1481-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27107297

ABSTRACT

Reward feedback following visual search causes the visual characteristics of targets to become salient and attention-drawing, but little is known about the mechanisms underlying this value-driven capture effect. Here, we use transcranial random noise stimulation (tRNS) to demonstrate that such reward potentiation involves induced plasticity in visual cortex. Human participants completed a feature-search reward-learning task involving the selection of a red or green colored target presented among distractors of various color. Each correct trial garnered reward and the magnitude of reward was determined by the color of the target. Three groups completed this task: two groups received tRNS over either occipital or frontal cortex, and the third group received sham stimulation as a control. In a subsequent test phase of the experiment participants searched for a unique shape presented among colored distractors. During the test phase, no tRNS was applied and no reward was available. However, in some trials a single distractor had color matching that associated with reward during training. Search for the target was impacted by the presence of such reward-associated distractors in the occipital stimulation group, demonstrating that plasticity in visual cortex contributes to value-driven attentional capture.


Subject(s)
Attention/physiology , Noise , Transcranial Direct Current Stimulation , Visual Cortex/physiology , Adult , Color , Electroencephalography , Female , Humans , Learning , Male , Neuronal Plasticity/physiology , Occipital Lobe/physiology , Photic Stimulation , Reaction Time/physiology , Reward , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...