ABSTRACT
Lactic acid bacteria (LAB) were isolated, identified, and characterized from pig feces at various growth stages and feed rations in order to be used as probiotic feed additives. Lactic acid bacteria numbers ranged from 7.10 ± 1.50 to 9.40 log CFUs/g for growing and lactating pigs, respectively. Isolates (n = 230) were identified by (GTG)5-polymerase chain reaction and partial sequence analysis of 16S rRNA. Major LAB populations were Limosilactobacillus reuteri (49.2%), Pediococcus pentosaceus (20%), Lactobacillus amylovorus (11.4%), and L. johnsonii (8.7%). In-vitro assays were performed, including surface characterization and tolerance to acid and bile salts. Several lactobacilli exhibited hydrophobic and aggregative characteristics and were able to withstand gastrointestinal tract conditions. In addition, lactobacilli showed starch- and phytate-degrading ability, as well as antagonistic activity against Gram-negative pathogens and the production of bacteriocin-like inhibitory substances. When resistance or susceptibility to antibiotics was evaluated, high phenotypic resistance to ampicillin, gentamicin, kanamycin, streptomycin, and tetracycline and susceptibility towards clindamycin and chloramphenicol was observed in the assayed LAB. Genotypic characterization showed that 5 out of 15 resistance genes were identified in lactobacilli; their presence did not correlate with phenotypic traits. Genes erm(B), strA, strB, and aadE conferring resistance to erythromycin and streptomycin were reported among all lactobacilli, whereas tet(M) gene was harbored by L. reuteri and L. amylovorus strains. Based on these results, 6 probiotic LAB strains (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T, and L. johnsonii S92R) can be selected to explore their potential as direct feed additives to promote swine health and replace antibiotics.
Des bactéries lactiques (LAB) ont été isolées, identifiées et caractérisées à partir de matières fécales de porc à différents stades de croissance et de rations alimentaires afin d'être utilisées comme additifs alimentaires probiotiques. Le nombre de bactéries lactiques variait de 7,10 ± 1,50 à 9,40 log UFC/g pour les porcs en croissance et en lactation, respectivement. Les isolats (n = 230) ont été identifiés par réaction d'amplification en chaîne par la (GTG)5-polymérase et analyse partielle de la séquence de l'ARNr 16S. Les principales populations de LAB étaient Limosilactobacillus reuteri (49,2 %), Pediococcus pentosaceus (20 %), Lactobacillus amylovorus (11,4 %) et L. johnsonii (8,7 %). Des tests in vitro ont été effectués, y compris la caractérisation de surface et la tolérance aux acides et aux sels biliaires. Plusieurs lactobacilles présentaient des caractéristiques hydrophobes et agrégatives et étaient capables de résister aux conditions du tractus gastro-intestinal. De plus, les lactobacilles ont montré une capacité de dégradation de l'amidon et des phytates, ainsi qu'une activité antagoniste contre les agents pathogènes à Gram négatif et la production de substances inhibitrices de type bactériocine. Lorsque la résistance ou la sensibilité aux antibiotiques a été évaluée, une résistance phénotypique élevée à l'ampicilline, à la gentamicine, à la kanamycine, à la streptomycine et à la tétracycline et une sensibilité à la clindamycine et au chloramphénicol ont été observées dans les LAB testés. La caractérisation génotypique a montré que cinq gènes de résistance sur 15 ont été identifiés dans les lactobacilles; leur présence n'était pas corrélée aux traits phénotypiques. Les gènes erm(B), strA, strB et aadE conférant une résistance à l'érythromycine et à la streptomycine ont été signalés parmi tous les lactobacilles, tandis que le gène tet(M) était hébergé par les souches L. reuteri et L. amylovorus. Sur la base de ces résultats, six souches probiotiques LAB (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T et L. johnsonii S92R) peuvent être sélectionnées pour explorer leur potentiel en tant qu'additifs alimentaires directs pour promouvoir la santé des porcs et remplacer les antibiotiques.(Traduit par Docteur Serge Messier).
Subject(s)
Lactobacillales , Probiotics , Animals , Swine , Female , Lactobacillales/genetics , RNA, Ribosomal, 16S/genetics , Lactation , Anti-Bacterial Agents/pharmacology , Lactobacillus/genetics , Feces/microbiology , Probiotics/pharmacology , StreptomycinABSTRACT
Modulation of animal gut microbiota is a prominent function of probiotics to improve the health and performance of livestock. In this study, a large-scale survey to evaluate the effect of lactic acid bacteria probiotics on shaping the fecal bacterial community structure of feedlot cattle during three experimental periods of the fattening cycle (163 days) was performed. A commercial feedlot located in northwestern Argentina was enrolled with cattle fed mixed rations (forage and increasing grain diet) and a convenience-experimental design was conducted. A pen (n = 21 animals) was assigned to each experimental group that received probiotics during three different periods. Groups of n = 7 animals were sampled at 40, 104 and 163 days and these samples were then pooled to one, thus giving a total of 34 samples that were subjected to high-throughput sequencing. The microbial diversity of fecal samples was significantly affected (p < 0.05) by the administration period compared with probiotic group supplementation. Even though, the three experimental periods of probiotic administration induced changes in the relative abundance of the most representative bacterial communities, the fecal microbiome of samples was dominated by the Firmicutes (72-98%) and Actinobacteria (0.8-27%) phyla, while a lower abundance of Bacteroidetes (0.08-4.2%) was present. Probiotics were able to modulate the fecal microbiota with a convergence of Clostridiaceae, Lachnospiraceae, Ruminococcaceae and Bifidobacteriaceae associated with health and growth benefits as core microbiome members. Metabolic functional prediction comparing three experimental administration periods (40, 104 and 163 days) showed an enrichment of metabolic pathways related to complex plant-derived polysaccharide digestion as well as amino acids and derivatives during the first 40 days of probiotic supplementation. Genomic-based knowledge on the benefits of autochthonous probiotics on cattle gastrointestinal tract (GIT) microbiota composition and functions will contribute to their selection as antibiotic alternatives for commercial feedlot.