Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Boundary Layer Meteorol ; 190(5): 24, 2024.
Article in English | MEDLINE | ID: mdl-38706472

ABSTRACT

In absence of the high-frequency measurements of wind components, sonic temperature and water vapour required by the eddy covariance (EC) method, Monin-Obukhov similarity theory (MOST) is often used to calculate heat fluxes. However, MOST requires assumptions of stability corrections and roughness lengths. In most environments and weather situations, roughness length and stability corrections have high uncertainty. Here, we revisit the modified Bowen-ratio method, which we call C-method, to calculate the latent heat flux over snow. In the absence of high-frequency water vapour measurements, we use sonic anemometer data, which have become much more standard. This method uses the exchange coefficient for sensible heat flux to estimate latent-heat flux. Theory predicts the two exchange coefficients to be equal and the method avoids assuming roughness lengths and stability corrections. We apply this method to two datasets from high mountain (Alps) and polar (Antarctica) environments and compare it with MOST and the three-layer model (3LM). We show that roughness length has a great impact on heat fluxes calculated using MOST and that different calculation methods over snow lead to very different results. Instead, the 3LM leads to good results, in part due to the fact that it avoids roughness length assumptions to calculate heat fluxes. The C-method presented performs overall better or comparable to established MOST with different stability corrections and provides results comparable to the direct EC method. An application of this method is provided for a new station installed in the Pamir mountains. Supplementary Information: The online version contains supplementary material available at 10.1007/s10546-024-00864-y.

2.
Science ; 369(6505): 838-841, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32792397

ABSTRACT

More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.


Subject(s)
Environmental Restoration and Remediation , Forests , Tropical Climate , Agriculture , Biodiversity , Carbon Dioxide/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...