Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 47(7): 717-726, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25985138

ABSTRACT

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.


Subject(s)
Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing , Molecular Diagnostic Techniques , Base Sequence , DNA Mutational Analysis , Genetic Diseases, Inborn/genetics , Genome, Human , Humans , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Sensitivity and Specificity
2.
BMC Bioinformatics ; 7: 210, 2006 Apr 19.
Article in English | MEDLINE | ID: mdl-16623936

ABSTRACT

BACKGROUND: Large-scale genetic mapping projects require data management systems that can handle complex phenotypes and detect and correct high-throughput genotyping errors, yet are easy to use. DESCRIPTION: We have developed an Integrated Genotyping System (IGS) to meet this need. IGS securely stores, edits and analyses genotype and phenotype data. It stores information about DNA samples, plates, primers, markers and genotypes generated by a genotyping laboratory. Data are structured so that statistical genetic analysis of both case-control and pedigree data is straightforward. CONCLUSION: IGS can model complex phenotypes and contain genotypes from whole genome association studies. The database makes it possible to integrate genetic analysis with data curation. The IGS web site http://bioinformatics.well.ox.ac.uk/project-igs.shtml contains further information.


Subject(s)
Chromosome Mapping/methods , DNA/genetics , Database Management Systems , Linkage Disequilibrium/genetics , Pedigree , Sequence Analysis, DNA/methods , User-Computer Interface , Computer Graphics , Internet , Sequence Alignment/methods , Systems Integration
3.
Am J Hum Genet ; 72(4): 879-90, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12612864

ABSTRACT

Several theoretical studies have suggested that large samples of randomly ascertained siblings can be used to ascertain phenotypically extreme individuals and thereby increase power to detect genetic linkage in complex traits. Here, we report a genetic linkage scan using extremely discordant and concordant sibling pairs, selected from 34,580 sibling pairs in the southwest of England who completed a personality questionnaire. We performed a genomewide scan for quantitative-trait loci (QTLs) that influence variation in the personality trait of neuroticism, or emotional stability, and we established genomewide empirical significance thresholds by simulation. The maximum pointwise P values, expressed as the negative logarithm (base 10), were found on 1q (3.95), 4q (3.84), 7p (3.90), 12q (4.74), and 13q (3.81). These five loci met or exceeded the 5% genomewide significance threshold of 3.8 (negative logarithm of the P value). QTLs on chromosomes 1, 12, and 13 are likely to be female specific. One locus, on chromosome 1, is syntenic with that reported from QTL mapping of rodent emotionality, an animal model of neuroticism, suggesting that some animal and human QTLs influencing emotional stability may be homologous.


Subject(s)
Chromosome Mapping/methods , Genetic Variation , Personality Disorders/genetics , Quantitative Trait Loci , Adult , England , Female , Genetic Markers , Genotype , Humans , Male , Middle Aged , Neurotic Disorders/genetics , Personality Assessment , Regression Analysis , Siblings , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...