Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 14896, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28374740

ABSTRACT

Epilepsy-the propensity toward recurrent, unprovoked seizures-is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms-namely, the effects of an increased extracellular potassium concentration diffusing in space-that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures-and connecting these dynamics to specific biological mechanisms-promises new insights to treat this devastating disease.


Subject(s)
Cerebral Cortex/physiopathology , Epilepsies, Partial/physiopathology , Neurons/physiology , Seizures/physiopathology , Adult , Cerebral Cortex/metabolism , Electroencephalography , Epilepsies, Partial/metabolism , Extracellular Space/metabolism , Humans , Male , Middle Aged , Models, Theoretical , Neurons/metabolism , Potassium/metabolism , Seizures/metabolism , Spatio-Temporal Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...