Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 146(1): 014303, 2017 Jan 07.
Article in English | MEDLINE | ID: mdl-28063445

ABSTRACT

Dynamic nuclear polarization (DNP) is a technique that uses a microwave-driven transfer of high spin alignment from electrons to nuclear spins. This is most effective at low temperature and high magnetic field, and with the invention of the dissolution method, the amplified nuclear magnetic resonance (NMR) signals in the frozen state in DNP can be harnessed in the liquid-state at physiologically acceptable temperature for in vitro and in vivo metabolic studies. A current optimization practice in dissolution DNP is to dope the sample with trace amounts of lanthanides such as Gd3+ or Ho3+, which further improves the polarization. While Gd3+ and Ho3+ have been optimized for use in dissolution DNP, other lanthanides have not been exhaustively studied for use in C13 DNP applications. In this work, two additional lanthanides with relatively high magnetic moments, Dy3+ and Tb3+, were extensively optimized and tested as doping additives for C13 DNP at 3.35 T and 1.2 K. We have found that both of these lanthanides are also beneficial additives, to a varying degree, for C13 DNP. The optimal concentrations of Dy3+ (1.5 mM) and Tb3+ (0.25 mM) for C13 DNP were found to be less than that of Gd3+ (2 mM). W-band electron paramagnetic resonance shows that these enhancements due to Dy3+ and Tb3+ doping are accompanied by shortening of electron T1 of trityl OX063 free radical. Furthermore, when dissolution was employed, Tb3+-doped samples were found to have similar liquid-state C13 NMR signal enhancements compared to samples doped with Gd3+, and both Tb3+ and Dy3+ had a negligible liquid-state nuclear T1 shortening effect which contrasts with the significant reduction in T1 when using Gd3+. Our results show that Dy3+ doping and Tb3+ doping have a beneficial impact on C13 DNP both in the solid and liquid states, and that Tb3+ in particular could be used as a potential alternative to Gd3+ in C13 dissolution DNP experiments.

2.
Phys Chem Chem Phys ; 18(31): 21351-9, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27424954

ABSTRACT

We have investigated the effects of Ho-DOTA doping on the dynamic nuclear polarization (DNP) of [1-(13)C] sodium acetate using trityl OX063 free radical at 3.35 T and 1.2 K. Our results indicate that addition of 2 mM Ho-DOTA on 3 M [1-(13)C] sodium acetate sample in 1 : 1 v/v glycerol : water with 15 mM trityl OX063 improves the DNP-enhanced (13)C solid-state nuclear polarization by a factor of around 2.7-fold. Similar to the Gd(3+) doping effect on (13)C DNP, the locations of the positive and negative (13)C maximum polarization peaks in the (13)C microwave DNP sweep are shifted towards each other with the addition of Ho-DOTA on the DNP sample. W-band electron spin resonance (ESR) studies have revealed that while the shape and linewidth of the trityl OX063 ESR spectrum was not affected by Ho(3+)-doping, the electron spin-lattice relaxation time T1 of trityl OX063 was prominently reduced at cryogenic temperatures. The reduction of trityl OX063 electron T1 by Ho-doping is linked to the (13)C DNP improvement in light of the thermodynamic picture of DNP. Moreover, the presence of Ho-DOTA in the dissolution liquid at room temperature has negligible reduction effect on liquid-state (13)C T1, in contrast to Gd(3+)-doping which drastically reduces the (13)C T1. The results here suggest that Ho(3+)-doping is advantageous over Gd(3+) in terms of preservation of hyperpolarized state-an important aspect to consider for in vitro and in vivo NMR or imaging (MRI) experiments where a considerable preparation time is needed to administer the hyperpolarized (13)C liquid.

3.
NMR Biomed ; 29(4): 466-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26836042

ABSTRACT

The source of hyperpolarized (HP) [(13)C]bicarbonate in the liver during metabolism of HP [1-(13)C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [(13)C]bicarbonate during metabolism of HP [1-(13)C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The (13)C NMR of HP [(13)C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non-hyperpolarized [2,3-(13)C]pyruvate. (13)C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [(13)C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well-fed rats, the appearance of HP [(13)C]bicarbonate exclusively reflects decarboxylation of HP [1-(13)C]pyruvate via pyruvate dehydrogenase.


Subject(s)
Liver/metabolism , Magnetic Resonance Spectroscopy/methods , Pyruvic Acid/metabolism , Alanine/metabolism , Animals , Bicarbonates/metabolism , Carbon Isotopes , Carbon-13 Magnetic Resonance Spectroscopy , Citric Acid Cycle , Gluconeogenesis , Lactic Acid/metabolism , Phosphoenolpyruvate Carboxykinase (ATP) , Proton Magnetic Resonance Spectroscopy , Pyruvate Carboxylase/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...