Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Biomembr ; 1866(1): 184234, 2024 01.
Article in English | MEDLINE | ID: mdl-37741307

ABSTRACT

The behavior of amphiphilic molecules such as lipids, peptides and their mixtures at the air/water interface allow us to evaluate and visualize the arrangement formed in a confined and controlled surface area. We have studied the surface properties of the zwitterionic DPPC lipid and Aß(1-40) amyloid peptide in mixed films at different temperatures (from 15 to 40 °C). In this range of temperature the surface properties of pure Aß(1-40) peptide remained unchanged, whereas DPPC undergoes its characteristic liquid-expanded â†’ liquid-condensed bidimensional phase transition that depends on the temperature and lateral pressure. This particular property of DPPC makes it possible to dynamically study the influence of the lipid phase state on amyloid structure formation at the interface in a continuous, isothermal and abrupt change on the environmental condition. As the mixed film is compressed the fibril-like structure of Aß(1-40) is triggered specifically in the liquid-expanded region, independently of temperature, and it is selectively excluded from the well-visible liquid condensed domains of DPPC. The Aß amyloid fibers were visualized by using BAM and AFM and they were Thio T positive. In mixed DPPC/Aß(1-40) films the condensed domains (in between 11 mN/m to 20 mN/m) become irregular probably due to the fibril-like structures is imposing additional lateral stress sequestering lipid molecules in the surrounding liquid-expanded phase to self-organize into amyloids.


Subject(s)
Amyloid beta-Peptides , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Amyloid/chemistry , Phase Transition , Surface Properties , Amyloid beta-Peptides/chemistry , Lipids/chemistry
2.
Langmuir ; 39(51): 18923-18934, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38079396

ABSTRACT

Alzheimer's disease (AD) is related to the fibrillation of the Aß peptides at neuronal membranes, a process that depends on the lipid composition and may impart different physical states to the membrane. In the present work, we study the properties of the Aß peptide when mixed with a zwitterionic lipid (DMPC), using the Langmuir monolayer technique as an approach to control membrane physical conditions. First, we build on previous characterizations of pure Aß monolayers and observe that, in addition to high shear, these films present a pronounced compressional hysteresis. When Aß is assembled with DMPC in a binary film, the resulting membranes become heterogeneous, with a peptide-enriched phase distributed in a network-like pattern, and they exhibit a lateral transition that depends on the Aß content. At lower peptide proportions, the films segregate into two well-defined phases: one consisting of lipids and another enriched with peptides. The reflectivity of these phases differs from that obtained for pure Aß films. Thus, the formed fibers effectively cover most of the interface area and remain stable at higher pressures (from 20 to 30 mN m-1 depending on Aß content) compared to pure peptide films (17 mN m-1). Furthermore, such structures induce a compressional hysteresis in the film, similar to that of pure peptide films (which is nonexistent in the pure lipid monolayer), even at low peptide proportions. We claim that the mechanical properties at the interface are governed by the size of the fibril-like structures. Based on the low molar fractions and surface packing at which these phenomena were observed, we postulate that as a consequence of peptide intermolecular interactions, Aß may have drastic effects on the molecular arrangement and mechanical properties of a lipid membrane.


Subject(s)
Amyloid beta-Peptides , Mechanical Phenomena , Membrane Lipids , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Membrane Lipids/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Microscopy, Electron, Scanning , Protein Aggregation, Pathological/pathology , Humans
4.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140920, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37207817

ABSTRACT

A novel mathematical development applied to protein ligand binding thermodynamics is proposed, which allows the simulation, and therefore the analysis of the effects of multiple and independent binding sites to the Native and/or Unfolded protein conformations, with different binding constant values. Protein stability is affected when it binds to a small number of high affinity ligands or to a high number of low affinity ligands. Differential scanning calorimetry (DSC) measures released or absorbed energy of thermally induced structural transitions of biomolecules. This paper presents the general theoretical development for the analysis of thermograms of proteins obtained for n-ligands bound to the native protein and m-ligands bound to their unfolded form. In particular, the effect of ligands with low affinity and with a high number of binding sites (n and/or m > 50) is analyzed. If the interaction with the native form of the protein is the one that predominates, they are considered stabilizers and if the binding with the unfolded species predominates, it is expected a destabilizing effect. The formalism presented here can be adapted to fitting routines in order to simultaneously obtain the unfolding energy and ligand binding energy of the protein. The effect of guanidinium chloride on bovine serum albumin thermal stability, was successfully analyzed with the model considering low number of middle affinity binding sites to the native state and a high number of weak binding sites to the unfolded state.


Subject(s)
Models, Theoretical , Proteins , Ligands , Protein Denaturation , Binding Sites , Proteins/chemistry , Protein Stability
5.
Biochim Biophys Acta Biomembr ; 1864(12): 184048, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36115495

ABSTRACT

We used the Langmuir monolayers technique to study the surface properties of melittin toxin mixed with either liquid-condensed DSPC or liquid-expanded POPC phospholipids. Pure melittin peptide forms stable insoluble monolayers at the air-water interface without interacting with Thioflavin T (Th-T), a sensitive probe to detect protein amyloid formation. When melittin peptide is mixed with DSPC lipid at 50 % of peptide area proportion at the surface, we observed the formation of fibril-like structures detected by Brewster angle microscopy (BAM), but they were not observable with POPC. The nano-structures in the melittin-DSPC mixtures became Th-T positive labeling when the arrangement was observed with fluorescence microscopy. In this condition, Th-T undergoes an unexpected shift in the typical emission wavelength of this amyloid marker when a 2D fluorescence analysis is conducted. Even when reflectivity analysis of BAM imaging evidenced that these structures would correspond to the DSPC lipid component of the mixture, the interpretation of ATR-FTIR and Th-T data suggested that both components were involved in a new lipid-peptide rearrangement. These nano-fibril arrangements were also evidenced by scanning electron and atomic force microscopy when the films were transferred to a mica support. The fibril formation was not detected when melittin was mixed with the liquid-expanded POPC lipid. We postulated that DSPC lipids can dynamically trigger the process of amyloid-like nano-arrangement formation at the interface. This process is favored by the relative peptide content, the quality of the interfacial environment, and the physical state of the lipid at the surface.


Subject(s)
Melitten , Phospholipids , Microscopy, Atomic Force , Surface Properties , Water/chemistry
6.
Int J Mol Sci ; 23(18)2022 09 08.
Article in English | MEDLINE | ID: mdl-36142273

ABSTRACT

Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and ß3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/ß3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.


Subject(s)
Glycolipids , Glycosyltransferases , Animals , G(M1) Ganglioside/metabolism , Gangliosides/metabolism , Glycolipids/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Golgi Apparatus/metabolism , Mammals/metabolism , Phosphoproteins/metabolism
7.
Biochim Biophys Acta Biomembr ; 1864(1): 183749, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34506795

ABSTRACT

Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aß(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aß(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aß(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).


Subject(s)
Amyloid beta-Peptides/chemistry , Gangliosides/chemistry , Glycosphingolipids/chemistry , Membrane Lipids/chemistry , Nanostructures/chemistry , Peptide Fragments/chemistry , Amyloid/chemistry , Amyloid beta-Peptides/ultrastructure , Microscopy, Atomic Force , Nanostructures/ultrastructure , Peptide Fragments/ultrastructure , Phosphatidylcholines/chemistry , Surface Properties
8.
Colloids Surf B Biointerfaces ; 203: 111734, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33836369

ABSTRACT

Langmuir monolayer allows for a two-dimensional nano-scale organization of amphiphilic molecules. We have adapted this technique to measure lateral and transverse conductivity in confined peptide nanosheets for the first time. We reported that two retro-isomers amphipathic peptides form stable monolayers showing a semiconductor-like behavior. Both peptides exhibit the same hydrophobicity and surface stability. They differ in the lateral conductivity and current-voltage due to the asymmetric peptide bond backbone orientation at the interface. Both peptides contain several tyrosines allowing the lateral crosslinking in neighboring molecules induced by UVB. UVB-light induces changes in the lateral conductivity and current-voltage behavior as well as monolayer heterogeneity monitored by Brewster Angle Microscopy. The semiconductor properties depend on the peptide bond backbone orientation and tyrosine crosslinking. Our results indicate that one may design extended nano-sheets with particular electric properties, reminiscent of semiconductors. We propose to exploit such properties for biosensing and neural interfaces.


Subject(s)
Peptides , Ultraviolet Rays , Hydrophobic and Hydrophilic Interactions , Semiconductors , Surface Properties
9.
Langmuir ; 36(28): 8056-8065, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551671

ABSTRACT

We studied the surface properties of Aß(1-40) amyloid peptides mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) (liquid state) or 1,2-disteraoyl-phosphatidylcholine (DSPC) (solid state) phospholipids by using nanostructured lipid/peptide films (Langmuir monolayers). Pure Aß(1-40) amyloid peptides form insoluble monolayers without forming fibril-like structures. In a lipid environment [phospholipid/Aß(1-40) peptide mixtures], we observed that both miscibility and stability of the films depend on the peptide content. At low Aß(1-40) amyloid peptide proportion (from 2.5 to 10% of peptide area proportion), we observed the formation of a fibril-like structure when mixed only with POPC lipids. The stability acquired by these mixed films is within 20-35 mN·m-1 compatible with the equivalent surface pressure postulated for natural biomembranes. Fibrils are clearly evidenced directly from the monolayers by using Brewster angle microscopy. The so-called nanostructured fibrils are thioflavin T positive when observed by fluorescence microscopy. The amyloid fibril network at the surface was also evidenced by atomic force microscopy when the films are transferred onto a mica support. Aß(1-40) amyloid mixed with the solid DSPC lipid showed an immiscible behavior in all peptide proportions without fibril formation. We postulated that the amyloid fibrillogenesis at the membrane can be dynamically nano-self-triggered at the surface by the quality of the interfacial environment, that is, the physical state of the water-lipid interface and the relative content of amyloid protein present at the interface.


Subject(s)
Amyloid beta-Peptides , Amyloid , Microscopy, Atomic Force , Peptide Fragments , Phospholipids , Surface Properties
10.
Front Plant Sci ; 10: 861, 2019.
Article in English | MEDLINE | ID: mdl-31354755

ABSTRACT

Secreted phospholipases (sPLA2s) in plants are a growing group of enzymes that catalyze the hydrolysis of sn-2 glycerophospholipids to lysophospholipids and free fatty acids. Until today, around only 20 sPLA2s were reported from plants. This review discusses the newly acquired information on plant sPLA2s including molecular, biochemical, catalytic, and functional aspects. The comparative analysis also includes phylogenetic, evolutionary, and tridimensional structure. The observations with emphasis in Glycine max sPLA2 are compared with the available data reported for all plants sPLA2s and with those described for animals (mainly from pancreatic juice and venoms sources).

11.
Biochem Biophys Res Commun ; 505(1): 290-294, 2018 10 20.
Article in English | MEDLINE | ID: mdl-30249399

ABSTRACT

The amphipathic lipid packing sensor (ALPS) motif of ArfGAP1 brings this GTPase activating protein to membranes of high curvature. Phospholipases are phospholipid-hydrolyzing enzymes that generate different lipid products that alter the lateral organization of membranes. Here, we evaluate by fluorescence microscopy how in-situ changes of membrane lipid composition driven by the activity of different phospholipases promotes the binding of ALPS. We show that the activity of phospholipase A2, phospholipase C and phospholipase D drastically enhances the binding of ALPS to the weakly-curved membrane of giant liposomes. Our results suggest that the enzymatic activity of phospholipases can modulate the ArfGAP1-mediated intracellular traffic and that amphiphilic peptides such as the ALPS motif can be used to study lipolytic activities at lipid membranes.


Subject(s)
GTPase-Activating Proteins/metabolism , Membrane Lipids/metabolism , Phospholipases/metabolism , Phospholipids/metabolism , Amino Acid Motifs/genetics , Animals , GTPase-Activating Proteins/genetics , Golgi Apparatus/metabolism , Membrane Lipids/chemistry , Microscopy, Confocal , Phospholipase D/metabolism , Phospholipases A2/metabolism , Phospholipids/chemistry , Protein Binding , Time-Lapse Imaging/methods , Type C Phospholipases/metabolism , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
12.
Toxicol Lett ; 286: 39-47, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29197624

ABSTRACT

A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A2 (PLA2) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The functional profiles of PLA2-17, a direct hemolytic enzyme, and PLA2-12, a co-existing venom isoform lacking such effect, were compared. The enzymes differed not only in their ability to cause intravascular hemolysis: PLA2-17 additionally displayed lethal, myotoxic, and anticoagulant actions, whereas PLA2-12 lacked these effects. PLA2-12 was much more active in hydrolyzing a monodisperse synthetic substrate than PLA2-17, but the catalytic activity of latter was notably higher on a micellar substrate, or towards pure phospholipid artificial monolayers under controlled lateral pressures. Interestingly, PLA2-17 could hydrolyze substrate at a pressure of 20 mN m-1, in contrast to PLA2-12 or the non-toxic pancreatic PLA2. This suggests important differences in the monolayer penetrating power, which could be related to differences in toxicity. Comparative examination of primary structures and predicted three-dimensional folding of PLA2-12 and PLA2-17, revealed that differences concentrate in their N-terminal and central regions, leading to variations of the surface properties at the membrane interacting interface. PLA2-17 presents a less basic interfacial surface than PLA2-12, but more bulky aromatic residues, which could be associated to its higher membrane-penetrating strength. Altogether, these structural and functional comparative observations suggest that the ability of PLA2s to penetrate substrate interfaces could be a major determinant of toxicity, perhaps more important than protein surface charge.


Subject(s)
Coral Snakes , Elapid Venoms/toxicity , Hemolysis/drug effects , Phospholipases A2/toxicity , Reptilian Proteins/toxicity , Animals , Dose-Response Relationship, Drug , Elapid Venoms/enzymology , Female , Male , Mice , Models, Molecular , Permeability , Phospholipases A2/chemistry , Phospholipases A2/metabolism , Protein Conformation , Protein Folding , Protein Isoforms , Reptilian Proteins/chemistry , Reptilian Proteins/metabolism , Structure-Activity Relationship , Surface Properties , Time Factors
13.
Molecules ; 22(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053635

ABSTRACT

In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Computer Simulation , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation
14.
Colloids Surf B Biointerfaces ; 146: 180-7, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27318963

ABSTRACT

We determined the rheological properties of ß-amyloid Langmuir films at the air/water interface, a peptide whose interfacial structure is extended ß-sheet, and compared them with those of films composed of Melittin (Mel), which adopts an α-helical conformation at neutral pH. To determine the dilatational and shear moduli we evaluated the response of pure peptide monolayers to an oscillatory anisotropic compressive work. Additionally, a micro-rheological characterization was performed by tracking the diffusion of micrometer sized latex beads onto the interface. This technique allowed us the detection of different rheological behaviour between monolayers presenting a low shear response. Monolayers of the ß-sheet structure-adopting peptides, such as ß-amyloid peptides, exhibited a marked shear (elastic) modulus even at low surface pressures. In contrast, Mel monolayers exhibited negligible shear modulus and the micro-rheological shear response was markedly lower than that observed for either Aß1-40 or Aß1-42 amyloid peptides. When Mel monolayers were formed at the interface of an aqueous solution at pH 11, we observed an increase in both the lateral stability and film viscosity as detected by a slower diffusion of the latex beads, in keeping with an increase in ß-sheet structure at this high pH (verified by ATR and FT-IR measurements). We suggest that the interactions responsible for the marked response upon shear observed for ß-amyloid peptide monolayers are the hydrogen bonds of the ß-sheet structure that can form an infinite planar network at the interface. Conversely, α-helical Mel peptide lack of these inter-molecular interactions and, therefore the shear contribution was negligible. We propose that the secondary structure is important for modulating the rheological behavior of short peptide monolayers regardless of the mass density or surface charge at the surface.


Subject(s)
Amyloid beta-Peptides/chemistry , Melitten/chemistry , Rheology , Humans , Protein Structure, Secondary , Surface Properties , Thermodynamics , Viscosity
15.
Biochim Biophys Acta ; 1858(1): 123-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514604

ABSTRACT

Myelin is the self-stacked membrane surrounding axons; it is also the target of several pathological and/or neurodegenerative processes like multiple sclerosis. These processes involve, among others, the hydrolytic attack by phospholipases. In this work we describe the changes in isolated myelin structure after treatment with several secreted PLA2 (sPLA2), by using small angle x-ray scattering (SAXS) measurements. It was observed that myelin treated with all the tested sPLA2s (from cobra and bee venoms and from pig pancreas) preserved the lamellar structure but displayed an enlarged separation between membranes in certain zones. Additionally, the peak due to membrane asymmetry was clearly enhanced. The coherence length was also lower than the non-treated myelin, indicating increased disorder. These SAXS results were complemented by Langmuir film experiments to follow myelin monolayer hydrolysis at the air/water interface by a decrease in electric surface potential at different surface pressures. All enzymes produced hydrolysis with no major qualitative difference between the isoforms tested.


Subject(s)
Isoenzymes/chemistry , Myelin Sheath/chemistry , Phospholipases A2/chemistry , Spinal Cord/chemistry , Air/analysis , Animals , Bee Venoms/chemistry , Bee Venoms/enzymology , Bees , Cattle , Elapid Venoms/chemistry , Elapid Venoms/enzymology , Elapidae , Hydrolysis , Isoenzymes/isolation & purification , Myelin Sheath/ultrastructure , Pancreas/chemistry , Pancreas/enzymology , Phospholipases A2/isolation & purification , Scattering, Small Angle , Solutions , Surface Properties , Swine , Water/chemistry , X-Ray Diffraction
16.
Colloids Surf B Biointerfaces ; 139: 25-32, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26700230

ABSTRACT

The protein's primary structure has all the information for specific protein/peptide folding and, in many cases, can define specific amphiphilic regions along molecules that are important for interaction with membranes. In order to shed light on how peptide sequence is important for the surface properties of amphiphilic peptides, we designed three pairs of peptides with the following characteristics: (1) all molecules have the same hydrophobic residues; (2) the couples differ from each other in their hydrophilic amino acids: positively, negatively and non-charged; (3) each pair has the same residues (same global molecular hydrophobicity) but the primary structure is reversed in comparison to its partner (retro-isomer), giving a molecule with a hydrophilic N or C-terminus and a hydrophobic C or N-terminus. Using the Langmuir monolayer approach, we observed that sequence reversal has a central role in the lateral stability of peptide monolayers, in the ability of the molecules to partition into the air-water interface and in the rheological properties of peptide films, whereas the peptide's secondary structure, determined by ATR-FTIR, was the same for all peptides. Reversing the sequence also gives a differential way of peptide/lipid interaction when peptides are in the presence of POPC lipid bilayers. Our results show how sequence inversion confers a distinctive peptide surface behaviour and lipid interaction for molecules with a similar structure.


Subject(s)
Peptides/chemistry , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry , Amino Acid Sequence , Biological Transport , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Permeability , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Static Electricity , Structure-Activity Relationship
17.
Biochim Biophys Acta ; 1848(10 Pt A): 2216-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26051123

ABSTRACT

We present an analysis of lipid monolayer hydrolysis at a constant area to assess the optimal lateral surface pressure value (Πopt) and thus, the surface packing density of the lipid, at which the activity of a given lipolytic enzyme is maximal. This isochoric method consists of a measurement of the decrease down to zero of the Πopt of phospholipid substrate monolayer due to continuous hydrolysis using only one reaction compartment. We performed the comparison of both approaches using several commercially available and literature-evaluated sPLA2s. Also, we characterized for the first time the profile of hydrolysis of DLPC monolayers catalyzed by a sPLA2 from Streptomyces violaceoruber and isoenzymes purified from Bothrops diporus venom. One of these viper venom enzymes is a new isoenzyme, partially sequenced by a mass spectrometry approach. We also included the basic myotoxin sPLA2-III from Bothrops asper. Results obtained with the isochoric method and the standard isobaric one produced quite similar values of Πopt, validating the proposal. In addition, we propose a new classification parameter, a lipolytic ratio of hydrolysis at two lateral pressures, 20 mN·m(-1) and 10 mN·m(-1), termed here as LR20/10 index. This index differentiates quite well "high surface pressure" from "low surface pressure" sPLA2s and, by extension; it can be used as a functional criterion for the quality of a certain enzyme. Also, this index could be added to the grouping systematic criteria for the superfamily proposed for phospholipase A2.


Subject(s)
Chemistry Techniques, Analytical/methods , Lipolysis , Membrane Lipids/chemistry , Models, Chemical , Phospholipases A2/chemistry , Unilamellar Liposomes/chemistry , Computer Simulation , Enzyme Activation , Phospholipases A2/analysis
18.
Chem Phys Lipids ; 189: 1-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25987194

ABSTRACT

Secretory phospholipase A2 (sPLA2) are soluble enzymes that catalyze the conversion of phospholipids to lysophospholipids and free fatty acids at membrane interfaces. The effect of IAA and IPA auxins over the activity of recombinant sPLA2 isoforms from Glycine max was studied using membrane model systems including mixed micelles and Langmuir lipid monolayers. Both phytohormones stimulate the activity of both plant sPLA2 using DLPC/Triton mixed micelles as substrate. To elucidate the mechanism of action of the phytohormones, we showed that both auxins are able to self-penetrate lipid monolayers and cause an increment in surface pressure and an expansion of lipid/phytohormone mixed interfaces. The stimulating effect of auxins over phospholipase A2 activity was still present when using Langmuir mixed monolayers as organized substrate regardless of sPLA2 source (plant or animal). All the data suggest that the stimulating effect of auxins over sPLA2 is due to a more favorable interfacial environment rather to a direct effect over the enzyme.


Subject(s)
Glycine max/drug effects , Indoleacetic Acids/pharmacology , Phospholipases A2, Secretory/metabolism , Plant Growth Regulators/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Micelles , Phospholipases A2, Secretory/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Glycine max/enzymology , Substrate Specificity
19.
Biochimie ; 108: 48-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25447147

ABSTRACT

Two secretory phospholipase A2 (sPLA2s) from Glycine max, GmsPLA2-IXA-1 and GmsPLA2-XIB-2, have been purified as recombinant proteins and the activity was evaluated in order to obtain the optimum conditions for catalysis using mixed micelles and lipid monolayers as substrate. Both sPLA2s showed a maximum enzyme activity at pH 7 and a requirement of Ca(2+) in the micromolar range. These parameters were similar to those found for animal sPLA2s but a surprising optimum temperature for catalysis at 60 °C was observed. The effect of negative interfacial charges on the hydrolysis of organized substrates was evaluated through initial rate measurements using short chain phospholipids with different head groups. The enzymes showed subtle differences in the specificity for phospholipids with different head groups (DLPC, DLPG, DLPE, DLPA) in presence or absence of NaCl. Both recombinant enzymes showed lower activity toward anionic phospholipids and a preference for the zwitterionic ones. The values of the apparent kinetic parameters (Vmax and KM) demonstrated that these enzymes have more affinity for phosphatidylcholine compared with phosphatidylglycerol, in contrast with the results observed for pancreatic sPLA2. A hopping mode of catalysis was proposed for the action of these sPLA2 on mixed phospholipid/triton micelles. On the other hand, Langmuir-monolayers assays indicated an optimum lateral surface pressure for activity in between 13 and 16 mN/m for both recombinant enzymes.


Subject(s)
Biocatalysis , Cell Membrane/enzymology , Glycine max/enzymology , Phospholipases A2, Secretory/metabolism , Air , Enzyme Stability , Kinetics , Phospholipases A2, Secretory/chemistry , Substrate Specificity , Temperature , Water/chemistry
20.
Chem Phys Lipids ; 175-176: 131-7, 2013.
Article in English | MEDLINE | ID: mdl-24091073

ABSTRACT

Differential scanning calorimetry (DSC), mixed monomolecular layers and fluorescence spectroscopy techniques were applied to investigate the effect of thyroid hormones (THs) on the biophysical properties of model membranes. We found that both 3,3',5-triiodo-L-thyronine (T3) and 3,5,3',5'-tetraiodo-L-thyronine (T4) induce a broadening of the calorimetric main phase transition profile and reduce the transition enthalpy in liquid-crystalline state of dipalmitoylphosphatylcholine (DPPC) multilamellar vesicles. Tm changes from 41 °C to 40 °C compared to pure DPPC. When the experiments were done by adding THs to preformed multilamellar vesicles a second broader component in the DSC scan also appears at 20 min of incubation and becomes gradually more prominent with time, indicating a progressive alteration of lipid phase induced by THs. Analysis of surface pressure-molecular area isotherms in mixed monolayers of THs with either DPPC or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) at air-water interface indicated a reduction in molecular area for THs/lipid mixtures at all surface pressures. A substantial decrease in surface potential in mixed lipid/THs monolayers at all surface pressures were observed for both phospholipids without affecting the mixed monolayer integrity. The data of mixed lipid/THs behavior support the establishment of lateral miscibility. Alterations of bidimensional liquid expanded→liquid condensed phase transition observed for DPPC/THs mixed monolayers are compatible with the changes observed in DSC. The transverse movement of THs and the decrease of dipole potential were also observed in single unilamellar vesicles by using appropriate fluorescent probes.


Subject(s)
Lipid Bilayers/metabolism , Membrane Fluidity , Phospholipids/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Lipid Bilayers/chemistry , Phospholipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...