Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(45): 12926-12940, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023508

ABSTRACT

As society moves towards a net-zero future, the need to adopt more sustainable polymers is well understood, and as well as plastics, less visible formulation polymers should also be included within this shift. As researchers, industries and consumers move towards more sustainable products there is a clear need to define what sustainability means in fast moving consumer goods and how it can be considered at the design stage. In this perspective key challenges in achieving sustainable formulation polymers are highlighted, and opportunities to overcome them are presented.

2.
ACS Macro Lett ; 1(4): 473-477, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-35585744

ABSTRACT

Diels-Alder (DA) chemistry was used in the construction of amphiphilic cross-linked polymer networks comprised of furan-functionalized hyperbranched fluoropolymers and maleimide-functionalized linear poly(ethylene glycol)s, which were designed as antibiofouling coatings capable of repair. Discrete molecules and a linear polymer analog were studied as model systems to understand the nature of the thermally reversible [4 + 2] cycloaddition reaction involving a tetrafluorobenzylfuranyl ether unit, which was part of the structure for the incorporation of the DA functionalities into the composite network materials. Atomic force microscopy confirmed the complex, nanoscopically resolved topography needed for antibiofouling. Bright field and fluorescence imaging monitored healing at damage sites as well as the ability of the coatings to resist protein adsorption.

3.
ACS Appl Mater Interfaces ; 3(6): 2118-29, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21644572

ABSTRACT

A series of thiol-ene generated amphiphilic cross-linked networks was prepared by reaction of alkene-modified Boltorn polyesters (Boltorn-ene) with varying weight percent of 4-armed poly(ethylene glycol) (PEG) tetrathiol (0-25 wt%) and varying equivalents of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) (0-64 wt%). These materials were designed to present complex surface topographies and morphologies, with heterogeneity of surface composition and properties and robust mechanical properties, to serve as nontoxic antibiofouling coatings that are amenable to large-scale production for application in the marine environment. Therefore, a two-dimensional matrix of materials compositions was prepared to study the physical and mechanical properties, over which the compositions spanned from 0 to 25 wt% PEG tetrathiol and 0-64 wt% PETMP (the overall thiol/alkene (SH/ene) ratios ranged from 0.00 to 1.00 equiv), with both cross-linker weight percentages calculated with respect to the weight of Boltorn-ene. The Boltorn-ene components were prepared through the esterification of commercially available Boltorn H30 with 3-butenoic acid. The subsequent cross-linking of the Boltorn-PEG-PETMP films was monitored using IR spectroscopy, where it was found that near-complete consumption of both thiol and alkene groups occurred when the stoichiometry was ca. 48 wt% PETMP (0.75 equiv SH/ene, independent of PEG amount). The thermal properties of the films showed an increase in T(g) with an increase in 4-armed PEG-tetrathiol wt%, regardless of the PETMP concentration. Investigation of the bulk mechanical properties in dry and wet states found that the Young's modulus was the greatest at 48 wt% PETMP (0.75 equiv of SH/ene). The ultimate tensile strength increased when PETMP was constant and the PEG concentration was increased. The Young's modulus was slightly lower for wet films at constant PEG or constant PETMP amounts, than for the dry samples. The nanoscopic surface features were probed using atomic force microscopy (AFM), where it was observed that the surface of the amphiphilic films became increasingly rough with increasing PEG wt%. On the basis of the physicochemical data from the diverse sample matrix, a focused compositional profile was then investigated further to determine the antifouling performance of the cross-linked Boltorn-PEG-PETMP networks. For these studies, a low, constant PETMP concentration of 16 wt% was maintained with variation in the PEG wt% (0-35 wt%). Antifouling and fouling-release activities were tested against the marine alga Ulva. Spore settlement densities were low on these films, compared to that on standards of polydimethylsiloxane and glass.


Subject(s)
3-Mercaptopropionic Acid/analogs & derivatives , Biofouling/prevention & control , Polyesters/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , 3-Mercaptopropionic Acid/chemistry , Microscopy, Atomic Force
4.
Macromolecules ; 43(17): 7128-7138, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-21399721

ABSTRACT

Two RAFT-capable PEO macro-CTAs, 2 and 5 kDa, were prepared and used for the polymerization of isoprene which yielded well-defined block copolymers of varied lengths and compositions. GPC analysis of the PEO macro-CTAs and block copolymers showed remaining unreacted PEO macro-CTA. Mathematical deconvolution of the GPC chromatograms allowed for the estimation of the blocking efficiency, about 50% for the 5 kDa PEO macro-CTA and 64% for the 2 kDa CTA. Self assembly of the block copolymers in both water and decane was investigated and the resulting regular and inverse assemblies, respectively, were analyzed with DLS, AFM, and TEM to ascertain their dimensions and properties. Assembly of PEO-b-PIp block copolymers in aqueous solution resulted in well-defined micelles of varying sizes while the assembly in hydrophobic, organic solvent resulted in the formation of different morphologies including large aggregates and well-defined cylindrical and spherical structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...