Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
IEEE Trans Med Imaging ; 39(12): 3766-3778, 2020 12.
Article in English | MEDLINE | ID: mdl-32746121

ABSTRACT

Despite the benefits of mammography investigations, some studies have shown that X-ray exposure from the mammography screening itself can statistically cause breast cancer in a small fraction of women. Therefore, a dose reduction in mammography is desirable. At the same time, there is a demand for a higher spatial resolution in mammographic imaging. The most promising way to achieve these goals is the use of advanced photon-processing semiconductor X-ray detectors with optimum sensor materials. This study addresses the investigation of the optimum semiconductor sensor material for mammography in combination with the photon-processing detector Medipix3RX. The influence of K-shell fluorescence from the sensor material on the achievable contrast-to-noise ratio is investigated, as well as the attenuation efficiency. The three different sensor materials, CdTe, GaAs, and Si are studied, showing advances of CdTe-sensors for mammography. Furthermore, a comparison of the contrast-to-noise ratio between a clinical Se-detector and Medipix3RX detectors with Si- and CdTe-sensors is shown using a self-produced mammography phantom that is based on real human tissue.


Subject(s)
Cadmium Compounds , Quantum Dots , Arsenicals , Female , Gallium , Humans , Mammography , Tellurium
2.
Phys Med Biol ; 61(9): 3427-42, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27046451

ABSTRACT

The x-ray dark-field contrast accessible via grating interferometry is sensitive to features at length scales well below what is resolvable by a detector system. It is commonly explained as arising from small-angle x-ray scattering (SAXS), and can be implemented both at synchrotron beamlines and with low-brilliance sources such as x-ray tubes. Here, we demonstrate that for tube based setups the underlying process of image formation can be fundamentally different. For focal spots or detector pixels that comprise multiple grating periods, we show that dark-field images contain a strong artificial and system-specific component not arising from SAXS. Based on experiments carried out with a nanofocus x-ray tube and the example of an excised rat lung, we demonstrate that the dark-field contrast observed for porous media transforms into a differential phase contrast for large geometric magnifications. Using a photon counting detector with an adjustable point spread function, we confirm that a dark-field image can indeed be formed by an intra-pixel differential phase contrast that cannot be resolved as such due to a dephasing between the periodicities of the absorption grating and the Talbot carpet. Our findings are further corroborated by a link between the strength of this pseudo-dark-field contrast and our x-ray tube's focal spot size in a three-grating setup. These results must not be ignored when measurements are intended to be reproducible across systems.


Subject(s)
Heart/diagnostic imaging , Interferometry/methods , Lung/diagnostic imaging , Microscopy, Phase-Contrast/methods , Scattering, Small Angle , Trachea/diagnostic imaging , X-Ray Diffraction/methods , Animals , Photons , Rats , Rats, Sprague-Dawley
3.
Appl Radiat Isot ; 107: 220-224, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26547560

ABSTRACT

Radon and thoron as well as their short-lived progenies are decay products of the radium and thorium series decays. They are the most important radionuclide elements with respect to public exposure. To utilize the semiconductor pixel radiation Timepix chip for the measurement of active and real-time alpha particles from radon, thoron and their progenies, it is necessary to check the registration and visualization of the chip. An energy check for radon, thoron and their progenies, as well as for (241)Am and(210)Po sources, was performed using the radon and thoron chambers at NIRS (National Institute of Radiological Sciences). The check found an energy resolution of 200 keV with a 14% efficiency as well as a linear dependency between the channel number (cluster volume) and the energy. The coefficient of determination r(2) of 0.99 for the range of 5 to 9 MeV was calculated. In addition, an offset for specific Timepix configurations between pre-calibration for low energy from 6 to 60 keV, and the actual calibration for alpha particles with energies from 4000 to 9000 keV, was detected.

4.
IEEE Trans Med Imaging ; 34(3): 707-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24759983

ABSTRACT

High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred µm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of µm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 µm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , Tomography, X-Ray Computed/methods , Arsenicals/pharmacology , Cadmium Compounds/pharmacology , Gallium/pharmacology , Humans , Photons , Principal Component Analysis , Tellurium/pharmacology
5.
Opt Express ; 22(20): 24507-15, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25322026

ABSTRACT

The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

6.
Phys Med Biol ; 59(20): 6195-213, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25255737

ABSTRACT

Spectroscopic x-ray imaging based on pixellated semiconductor detectors can be sensitive to charge sharing and K-fluorescence, depending on the sensor material used, its thickness and the pixel pitch employed. As a consequence, spectroscopic resolution is partially lost. In this paper, we study a new detector ASIC, the Medipix3RX, that offers a novel feature called charge summing, which is established by making adjacent pixels communicate with each other. Consequently, single photon interactions resulting in multiple hits are almost completely avoided. We investigate this charge summing mode with respect to those of its imaging properties that are of interest in medical physics and benchmark them against the case without charge summing. In particular, we review its influence on spectroscopic resolution and find that the low energy bias normally present when recording energy spectra is dramatically reduced. Furthermore, we show that charge summing provides a modulation transfer function which is almost independent of the energy threshold setting, which is in contrast to approaches common so far. We demonstrate that this property is directly linked to the detective quantum efficiency, which is found to increase by a factor of three or more when the energy threshold approaches the photon energy and when using charge summing. As a consequence, the contrast-to-noise ratio is found to double at elevated threshold levels and the dynamic range increases for a given counter depth. All these effects are shown to lead to an improved ability to perform material discrimination in spectroscopic CT, using iodine and gadolinium contrast agents. Hence, when compared to conventional photon counting detectors, these benefits carry the potential of substantially reducing the imaging dose a patient is exposed to during diagnostic CT examinations.


Subject(s)
Photoelectron Spectroscopy/methods , Photons , Radiography/methods , Photoelectron Spectroscopy/instrumentation , Radiography/instrumentation , Semiconductors , X-Rays
8.
Med Phys ; 40(10): 101908, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24089910

ABSTRACT

PURPOSE: Pulse pileup occurring at high x-ray fluxes can severely degrade the energy resolution provided by a photon counting detector, which can represent a problem in spectroscopic CT when performing quantitative material discrimination tasks. As the effects of pileup can be most easily seen as a degradation of a detector's count rate linearity at high fluxes, it has been proposed previously to quantify and correct these nonlinearities. While this strategy has been applied successfully to materials without K-edges, it is currently unknown if this still prevails when using medical contrast agents. The purpose of this study is to close this gap. METHODS: A Medipix2MXR Hexa detector was employed, featuring a pixel pitch of 165 [micro sign]m and a 1 mm thick CdTe sensor. A phantom containing various concentrations of iodine and gadolinium contrast agents was subject to energy selective CT acquisitions, using a pulsable x-ray source operated at 70 kVp. These acquisitions were obtained at low and high photon fluxes of 1.0 × 10(6) and 1.3 × 10(7) mm(-2) s(-1), respectively. Nonlinearity corrections were applied to the high-flux projections and for each pixel separately. The results were compared to the results at low photon fluxes. RESULTS: At high fluxes, a general reduction of the reconstructed attenuation coefficients was observed, which could be partially recovered using the correction strategy applied. The spectroscopic separation of iodine from the phantom material, however, degraded with increasing x-ray flux. In contrast to this, gadolinium could still be discriminated almost as well as in the low flux case. CONCLUSIONS: Nonlinearity corrections applied to high flux measurements can help to recover attenuation coefficients normally obtained at low fluxes for low-Z materials, which do not exhibit an absorption edge in the relevant energy range. However, as a result of a significant change of the x-ray spectrum, the spectroscopic contrast normally observed for iodine was found to vanish with increasing x-ray flux. In other words, the authors' results indicate that nonlinearity corrections may be feasible only when the K-edge of interest is sufficiently high compared to the mean photon energy, and that spectroscopic CT at high x-ray fluxes may suffer from less limitations when using high-Z materials as contrast agents. A future study should aim to confirm these findings under clinical conditions.


Subject(s)
Image Processing, Computer-Assisted/methods , Nonlinear Dynamics , Photons , Tomography, X-Ray Computed/methods , Feasibility Studies , Monte Carlo Method
9.
J Synchrotron Radiat ; 20(Pt 1): 153-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23254668

ABSTRACT

The performance of a recently developed full-field X-ray micro-imaging system based on an in-line Bragg magnifier is reported. The system is composed of quasi-channel-cut crystals in combination with a Medipix single-photon-counting detector. A theoretical and experimental study of the imaging performance of the crystals-detector combination and a comparison with a standard indirect detector typically used in high-resolution X-ray imaging schemes are reported. The spatial resolution attained by our system is about 0.75 µm, limited only by the current magnification. Compared with an indirect detector system, this system features a better efficiency, signal-to-noise ratio and spatial resolution. The optimal working resolution range of this system is between ∼0.4 µm and 1 µm, filling the gap between transmission X-ray microscopes and indirect detectors. Applications for coherent full-field imaging of weakly absorbing samples are shown and discussed.


Subject(s)
Radiographic Image Enhancement/instrumentation , Holography/methods , Radiographic Image Enhancement/methods , X-Rays
10.
Phys Med Biol ; 57(21): 6743-59, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23032372

ABSTRACT

Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 µm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution.


Subject(s)
Cadmium Compounds , Tellurium , Tomography, X-Ray Computed/methods , Contrast Media , Image Processing, Computer-Assisted , Phantoms, Imaging , Radiometry , Temperature , Water
11.
J Synchrotron Radiat ; 18(Pt 5): 753-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21862856

ABSTRACT

In this work an X-ray imaging system based on a recently developed in-line two-dimensional Bragg magnifier composed of two monolithic V-shaped crystals made of dislocation-free germanium is presented. The channel-cut crystals were used in one-dimensional and in two-dimensional (crossed) configurations in imaging applications and allowed measurement of phase-contrast radiograms both in the edge-enhanced and in the holographic regimes. The measurement of the phase gradient in two orthogonal directions is demonstrated. The effective pixel size attained was 0.17 µm in the one-dimensional configuration and 0.5 µm in the two-dimensional setting, offering a twofold improvement in spatial resolution over devices based on silicon. These results show the potential for applying Bragg magnifiers to imaging soft matter at high resolution with reduced dose owing to the higher efficiency of Ge compared with Si.

SELECTION OF CITATIONS
SEARCH DETAIL
...