Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(4): 1472-1484, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28111938

ABSTRACT

Readily exchangeable water molecules are commonly found in the active sites of oxidoreductases, yet the overwhelming majority of studies on small-molecule mimics of these enzymes entirely ignores the contribution of water to the reactivity. Studies of how these enzymes can continue to function in spite of the presence of highly oxidizing species are likewise limited. The mononuclear MnII complex with the potentially hexadentate ligand N-(2-hydroxy-5-methylbenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (LOH) was previously found to act as both a H2O2-responsive MRI contrast agent and a mimic of superoxide dismutase (SOD). Here, we studied this complex in aqueous solutions at different pH values in order to determine its (i) acid-base equilibria, (ii) coordination equilibria, (iii) substitution lability and operative mechanisms for water exchange, (iv) redox behavior and ability to participate in proton-coupled electron transfer (PCET) reactions, (v) SOD activity and reductive activity toward both oxygen and superoxide, and (vi) mechanism for its transformation into the binuclear MnII complex with (H)OL-LOH and its hydroxylated derivatives. The conclusions drawn from potentiometric titrations, low-temperature mass spectrometry, temperature- and pressure-dependent 17O NMR spectroscopy, electrochemistry, stopped-flow kinetic analyses, and EPR measurements were supported by the structural characterization and quantum chemical analysis of proposed intermediate species. These comprehensive studies enabled us to determine how transiently bound water molecules impact the rate and mechanism of SOD catalysis. Metal-bound water molecules facilitate the PCET necessary for outer-sphere SOD activity. The absence of the water ligand, conversely, enables the inner-sphere reduction of both superoxide and dioxygen. The LOH complex maintains its SOD activity in the presence of •OH and MnIV-oxo species by channeling these oxidants toward the synthesis of a functionally equivalent binuclear MnII species.

2.
Inorg Chem ; 52(23): 13562-75, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24251906

ABSTRACT

A trio of Pt-based heterobimetallic lantern complexes of the form [(py)PtM(SAc)4(py)] (M = Co, 1; Ni, 2; Zn, 3) with unusual octahedral coordination of Pt(II) was prepared from a reaction of [PtM(SAc)4] with excess pyridine. These dipyridine lantern complexes could be converted to monopyridine derivatives with gentle heat to give the series [PtM(SAc)4(py)] (M = Co, 4; Ni, 5; Zn, 6). An additional family of the form [PtM(SAc)4(pyNH2)] (M = Co, 7; Ni, 8; Zn, 9) was synthesized from reaction of [PtM(SAc)4(OH2)] or [PtM(SAc)4] with 4-aminopyridine. Dimethylsulfoxide and N,N-dimethylformamide were also determined to react with [PtM(SAc)4] (M = Co, Ni), respectively, to give [PtCo(SAc)4(DMSO)](DMSO), 10, and [PtNi(SAc)4(DMF)](DMF), 11. Structural and magnetic data for these compounds and those for two other previously published families, [PtM(tba)4(OH2)] and [PtM(SAc)4(L)], L = OH2, pyNO2, are used to divide the structures among three distinct categories based on Pt···Pt and Pt···S distances. In general, the weaker donors H2O and pyNO2 seem to favor metallophilicity and antiferromagnetic coupling between 3d metal centers. When Pt···S interactions are favored over Pt···Pt ones, no coupling is observed and the pKa of the pyridine donor correlates with the interlantern S···S distance. UV-vis-NIR electronic and (1)H NMR spectra provide complementary characterization as well.

3.
Inorg Chem ; 52(9): 4926-33, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23600647

ABSTRACT

A series of Pt-based heterobimetallic lantern complexes of the form [PtM(SAc)4(OH2)] (M = Co, 1; Ni, 2; Zn, 3) were prepared using a facile, single-step procedure. These hydrated species were reacted with 3-nitropyridine (3-NO2py) to prepare three additional lantern complexes, [PtM(SAc)4(3-NO2py)] (M = Co, 4; Ni, 5; Zn, 6), or alternatively dried in vacuo to the dehydrated species [PtM(SAc)4] (M = Co, 7; Ni, 8; Zn, 9). The Co- and Ni-containing species exhibit Pt-M bonding in solution and the solid state. In the structurally characterized compounds 1-6, the lantern units form dimers in the solid state via a short Pt···Pt metallophilic interaction. Antiferromagnetic coupling between 3d metal ions in the solid state through noncovalent metallophilic interactions was observed for all the paramagnetic lantern complexes prepared, with J-coupling values of -12.7 cm(-1) (1), -50.8 cm(-1) (2), -6.0 cm(-1) (4), and -12.6 cm(-1) (5). The Zn complexes 3 and 6 also form solid-state dimers, indicating that the formation of short Pt···Pt interactions in these complexes is not predicated on the presence of a paramagnetic 3d metal ion. These contacts and the resultant antiferromagnetic coupling are also not unique to heterobimetallic lantern complexes with axially coordinated H2O or the previously reported thiobenzoate supporting ligand.

4.
Dalton Trans ; 41(40): 12577-85, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22960741

ABSTRACT

We report the syntheses, characterisations, and spin state behaviours of salts of the tripodal-ligated Fe(II) complex [FeL(6-OH)]X(2) (L(6-OH) = tris{4-[(6-methanol)-2-pyridyl]-3-aza-3-butenyl}amine, X = OTf(-) (1), Br(-) (2), I(-) (3), BPh(4)(-) (4)). Covalent linking of the ligand arms is imperative as a high-spin bis(tridentate) complex (5) is formed when a non-tethered ethyl iminopyridine ligand (L(2) = 4-[(6-methanol)-2-pyridyl]-3-aza-3-butenyl) is used. For salts 1-4, thermally-induced spin-crossover (SCO) is observed in the solid state, with dependence on anion and solvate molecules. Salts with larger anions show more complete SCO centred at higher temperatures (1 > 3 > 2); the triflate salt 1 (T(1/2) = 173 K) also shows the strongest cooperativity of the compounds examined. Hydrogen bonding appears to be critical to SCO in this family of salts: limiting interactions by use of tetraphenylborate produces a high-spin complex down to 5 K. In protic solvents such as methanol, spectra of [FeL(6-OH)](2+) are largely unchanged over a period of three days, but dissociate when interrogated with strong field bidentate ligands. Compounds 1-3, and 5 remain high spin in solution down to 180 K, consistent with the data obtained in the solid state.

6.
Dalton Trans ; 40(4): 944-50, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21135937

ABSTRACT

We report the syntheses, characterisations and magnetic properties of salts of the heteroleptic Fe(II) complex [(H(2)bip)(2)Fe(6-Mebpy)]X(2) (X = Br (1), BPh(4) (2), H(2)bip = 2,2'-bi-1,4,5,6-tetrahydropyrimidine, 6-Mebpy = 6-methyl-2,2'-bipyridine). The ditopic H(2)bip ligand serves as an anion binding group while 6-Mebpy is intended to adjust the complex ligand field. Thermally induced spin-crossover properties are observed in the solid state and solution, and are heavily influenced by the nature of the anion. Anion-triggered spin-state switching is observed for the heteroleptic complex in dichloromethane solution at 193 K, above background processes of ligand dissociation and rearrangement. Although substitution of 6-Mebpy appears to increase the ligand field encountered by the Fe(II) ion, salt 2 responds to bromide at a significantly lower temperature than the parent homoleptic complex salt [Fe(H(2)bip)(3)](BPh(4))(2).

7.
Inorg Chem ; 49(4): 1481-6, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20073502

ABSTRACT

After prolonged heating in acetonitrile, a highly asymmetric, trinuclear manganous complex self-assembles from MnCl(2) and bis(2-pyridylmethyl)-1,2-ethanediamine (bispicen). The central Mn(II) ion is bridged to the terminal metal ions in the molecule by single chloride anions. The organic ligands each bind to a single Mn(II) ion. The central Mn(II) and only one of the terminal Mn(II) ions are six-coordinate and bound to bispicen ligands. The remaining terminal Mn(II) ion is coordinated by a tetrahedral array of chloride anions, endowing the trinuclear cluster with a high degree of asymmetry. Variable temperature magnetic measurements are consistent with an S = 5/2 system, indicating net antiferromagnetic coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...