Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 89(1): 469-476, 2023 01.
Article in English | MEDLINE | ID: mdl-36089826

ABSTRACT

PURPOSE: This study aims to find a relation between the number of channels and the computational burden for specific absorption rate (SAR) calculation using virtual observation point-based SAR compression. METHODS: Eleven different arrays of rectangular loops covering a cylinder of fixed size around the head of an anatomically correct voxel model were simulated. The resulting Q-matrices were compressed with 2 different compression algorithms, with the overestimation fixed to a certain fraction of worst-case SAR, median SAR, or minimum SAR. The latter 2 were calculated from 1e6 normalized random excitation vectors. RESULTS: The number of virtual observation points increased with the number of channels to the power of 2.3-3.7, depending on the compression algorithm when holding the relative error fixed. Together with the increase in the size of the Q-matrices (and therefore the size of the virtual observation points), the total increase in computational burden with the number of channels was to the power of 4.3-5.7. CONCLUSION: The computational cost emphasizes the need to use the best possible compression algorithms when moving to high channel counts.


Subject(s)
Data Compression , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Algorithms , Computer Simulation , Phantoms, Imaging
2.
NMR Biomed ; 35(8): e4722, 2022 08.
Article in English | MEDLINE | ID: mdl-35226966

ABSTRACT

Longitudinally orientated dipoles and microstrip antennas have both demonstrated superior results as RF transmit elements for body imaging at 7 T MRI, and are as of today the most commonly used transmit elements. In this study, the performances of the two antenna concepts were compared for use in local RF antenna arrays by numerical simulations. Antenna elements investigated are the fractionated dipole and the microstrip line with meander structures. Phantom simulations with a single antenna element were performed and evaluated with regard to specific absorption rate (SAR) efficiency in the center of the subject. Simulations of array configurations with 8 and 16 elements were performed with anatomical body models. Both antenna elements were combined with a loop coil to compare hybrid configurations. Singular value decomposition of the B1+ fields, RF shimming, and calculation of the voxel-wise power and SAR efficiencies were performed in regions of interest with varying sizes to evaluate the transmit performance. The signal-to-noise ratio (SNR) was evaluated to estimate the receive performance. Simulated data show similar transmit profiles for the two antenna types in the center of the phantom (penetration depth > 20 mm). For body imaging, no considerable differences were determined for the different antenna configurations with regard to the transmit performance. Results show the advantage of 16 transmit channels compared with today's commonly used 8-channel systems (minimum RF shimming excitation error of 4.7% (4.3%) versus 2.7% (2.8%) for the 8-channel and 16-channel configurations with the microstrip antennas in a (5 cm)3 cube in the center of a male (female) body model). Highest SNR is achieved for the 16-channel configuration with fractionated dipoles. The combination of either fractionated dipoles or microstrip antennas with loop coils is more favorable with regard to the transmit performance compared with only increasing the number of elements.


Subject(s)
Magnetic Resonance Imaging , Models, Anatomic , Equipment Design , Female , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Phantoms, Imaging , Signal-To-Noise Ratio
3.
NMR Biomed ; 35(5): e4656, 2022 05.
Article in English | MEDLINE | ID: mdl-34962689

ABSTRACT

In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Temperature
4.
Magn Reson Med ; 86(5): 2853-2861, 2021 11.
Article in English | MEDLINE | ID: mdl-34216047

ABSTRACT

PURPOSE: Compression of local specific absorption rate (SAR) matrices is essential for enabling SAR monitoring and efficient pulse calculation in parallel transmission. Improvements in compression result in lower error margin and/or lower number of virtual observation points (VOPs). The purpose of this work is to introduce two algorithms for post-processing of already compressed VOP sets. One calculates individual overestimation matrices for the VOPs to reduce overestimation, the other identifies redundant VOPs. METHODS: The first algorithm was evaluated for VOP sets calculated for three different transmit arrays with either 8 or 16 channels. For each array, two different overestimation matrices were used to generate the VOP sets. Each post-processed VOP set was evaluated using one million random excitation vectors and the results compared to the VOP set before post-processing. The second algorithm was evaluated by utilizing the same random excitation vectors and comparing the results after removal of the redundant VOPs with the results before removal to verify that these were identical. RESULTS: The first algorithm reduced the mean overestimation by up to four fifths compared to the original set, while keeping the number of VOPs constant. The second algorithm decreased the number of VOPs generated by a compression with Eichfelder and Gebhardt's algorithm by more than 40% in 40% of the investigated cases and by more than 20% in 73% of the investigated cases. CONCLUSION: Two post-processing algorithms are presented that enhance previously compressed VOP sets by improving the accuracy per number of VOPs.


Subject(s)
Data Compression , Magnetic Resonance Imaging , Algorithms , Phantoms, Imaging
5.
NMR Biomed ; 34(7): e4515, 2021 07.
Article in English | MEDLINE | ID: mdl-33942938

ABSTRACT

The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Radio Waves , Computer Simulation , Humans , Male , Models, Biological
6.
Magn Reson Med ; 86(1): 561-568, 2021 07.
Article in English | MEDLINE | ID: mdl-33634530

ABSTRACT

PURPOSE: Local specific absorption rate (SAR) compression algorithms are essential for enabling online SAR monitoring in parallel transmission. A better compression resulting in a lower number of virtual observation points improves speed of SAR calculation for online supervision and pulse design. METHOD: An iterative expansion of an existing algorithm presented by Lee et al is proposed in this work. The original algorithm is used within a loop, making use of the virtual observation points from the previous iteration as the starting subvolume, while decreasing the overestimation with each iteration. This algorithm is evaluated on the SAR matrices of three different simulated arrays. RESULT: The number of virtual observation points is approximately halved with the new algorithm, while at the same time the compression time is reduced with speed-up factors of up to 2.5. CONCLUSION: The new algorithm improves the original algorithm in terms of compression rate and speed.


Subject(s)
Data Compression , Magnetic Resonance Imaging , Algorithms
7.
MAGMA ; 34(1): 153-163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32964299

ABSTRACT

OBJECTIVE: In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. METHOD: Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. RESULT: Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20% at the cost of a higher absolute overestimation at high actual local SAR values. CONCLUSION: The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.


Subject(s)
Data Compression , Algorithms , Computer Simulation , Magnetic Resonance Imaging , Phantoms, Imaging
8.
PLoS One ; 14(9): e0222452, 2019.
Article in English | MEDLINE | ID: mdl-31513637

ABSTRACT

PURPOSE: A 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented. First results are shown for phantom and in-vivo imaging. METHODS: The add-on system consists of a large number of hardware components, including modulators, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated 32-channel transmit/receive body array. B1+ maps in a phantom as well as B1+ maps and structural images in large volunteers are acquired to demonstrate the functionality of the system. EM simulations are used to ensure safe operation. RESULTS: Good agreement between simulation and experiment is shown. Phantom and in-vivo acquisitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz sampling rate is possible. The add-on system does not affect the quality of the original single-channel system. CONCLUSION: The presented 32-channel parallel transmit system shows promising performance for ultra-high field whole-body imaging.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Equipment Design , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
10.
Neuroimage ; 168: 33-58, 2018 03.
Article in English | MEDLINE | ID: mdl-28336426

ABSTRACT

At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.


Subject(s)
Absorption, Radiation , Electromagnetic Radiation , Hot Temperature , Magnetic Resonance Imaging/standards , Models, Anatomic , Models, Theoretical , Radio Waves , Safety/standards , Absorption, Radiation/physiology , Adult , Female , Hot Temperature/adverse effects , Humans , Magnetic Resonance Imaging/adverse effects , Male , Radio Waves/adverse effects
11.
Magn Reson Med ; 79(5): 2652-2664, 2018 05.
Article in English | MEDLINE | ID: mdl-28994132

ABSTRACT

PURPOSE: Current methods for mitigation of transmit field B1+ inhomogeneities at ultrahigh field (UHF) MRI by multi-channel radiofrequency (RF) shimming rely on accurate B1+ mapping. This can be time consuming when many RF channels have to be mapped for in vivo body MRI, where the B1 maps should ideally be acquired within a single breath-hold. Therefore, a new B1+ mapping technique (B1TIAMO) is proposed. METHODS: The performance of this technique is validated against an established method (DREAM) in phantom measurements for a cylindrical head phantom with an 8-channel transmit/receive (Tx/Rx) array. Furthermore, measurements for a 32-channel Tx/Rx remote array are conducted in a large body phantom and the |B1+| map reliability is validated against simulations of the transmit RF field distribution. Finally, in vivo results of this new mapping technique for human abdomen are presented. RESULTS: For the head phantom (8-channel Tx/Rx coil), the single |B1+| comparison between B1 TIAMO, the direct DREAM measurements, and simulation data showed good agreement with 10-19% difference. For the large body phantom (32-channel Tx/Rx coil), B1TIAMO matched the RF field simulations well. CONCLUSION: The results demonstrate the potential to acquire 32 accurate single-channel B1+ maps for large field-of-view body imaging within only a single breath-hold of 16 s at 7T UHF MRI. Magn Reson Med 79:2652-2664, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Equipment Design , Head/diagnostic imaging , Humans , Kidney/diagnostic imaging , Male , Phantoms, Imaging , Reproducibility of Results , Whole Body Imaging
12.
MAGMA ; 30(6): 519-536, 2017 12.
Article in English | MEDLINE | ID: mdl-28550649

ABSTRACT

OBJECTIVE: Functional parameters can be measured with the help of quantitative non-proton MRI where exact relaxometry parameters are needed. Investigation of [Formula: see text] is often biased by strong partial volume (PV) effects. Hence, in this work a PV correction algorithm approach was evaluated that uses iteratively adapted [Formula: see text]-values and high-resolution structural 1H data to determine transverse relaxation in non-proton MRI more accurately. MATERIALS AND METHODS: Simulations, a phantom study and in vivo 23Na, 17O and 35Cl MRI measurements of five healthy volunteers were performed to evaluate the algorithm. [Formula: see text] values of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were obtained. Data were acquired at B 0  = 7T with nominal spatial resolutions of (4-7 mm)3 using a density-adapted radial sequence. The resulting transverse relaxation times were used for quantification of 17O data. RESULTS: The conducted simulations and phantom study verified the correction performance of the algorithm. For in vivo measured [Formula: see text] values, the correction of PV effects leads to an increase in CSF and to a decrease in GM/WM (23Na MRI: long/short GM, WM [Formula: see text]: 36.4 ± 3.1/5.4 ± 0.2, 23.3 ± 2.6/3.5 ± 0.1 ms; 35Cl MRI: 8.9 ± 1.4/1.0 ± 0.4, 5.9 ± 0.3/0.4 ± 0.1 ms; 17O MRI: 2.5 ± 0.1, 2.8 ± 0.1 ms). Iteratively corrected in vivo [Formula: see text] values of the 17O study resulted in improved water content quantification. CONCLUSION: The proposed iterative algorithm for PV correction leads to more accurate [Formula: see text] values and, thus, can improve accuracy in quantitative non-proton MRI.


Subject(s)
Magnetic Resonance Imaging/methods , Adult , Algorithms , Brain/diagnostic imaging , Brain/metabolism , Chlorine , Computer Simulation , Female , Humans , Hydrogen , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Male , Oxygen Isotopes , Phantoms, Imaging , Protons , Sodium , Young Adult
14.
Med Phys ; 44(1): 143-157, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28102957

ABSTRACT

PURPOSE: The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. METHODS: A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B1+ maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. RESULTS: The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. CONCLUSION: The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations.


Subject(s)
Absorption, Radiation , Breast/diagnostic imaging , Breast/radiation effects , Magnetic Resonance Imaging/instrumentation , Radio Waves/adverse effects , Risk Assessment/methods , Temperature , Humans , Models, Biological , Phantoms, Imaging , Radiation Exposure/analysis , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...