Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339109

ABSTRACT

The central ion Mg2+ is responsible for the differences between chlorophyll a and its free base in their reactivity toward metal ions and thus their resistance to oxidation. We present here the results of spectroscopic (electronic absorption and emission, circular dichroism, and electron paramagnetic resonance), spectroelectrochemical, and computational (based on density functional theory) investigations into the mechanism of pheophytin, a degradation that occurs in the presence of Cu ions and O2. The processes leading to the formation of the linear form of tetrapyrrole are very complex and involve the weakening of the methine bridge due to an electron withdrawal by Cu(II) and the activation of O2, which provides protection to the free ends of the opening macrocycle. These mechanistic insights are related to the naturally occurring damage to the photosynthetic apparatus of plants growing on metal-contaminated soils.


Subject(s)
Copper , Pheophytins , Reactive Oxygen Species/metabolism , Copper/chemistry , Chlorophyll A , Oxidation-Reduction , Metals , Ions , Electron Spin Resonance Spectroscopy , Oxygen/metabolism
2.
Mol Imaging Biol ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296885

ABSTRACT

PURPOSE: Molecular oxygen, besides a photosensitizer and light of appropriate wavelength, is one of the three factors necessary for photodynamic therapy (PDT). In tumor tissue, PDT leads to the killing of tumor cells, destruction of endothelial cells and vasculature collapse, and the induction of strong immune responses. All these effects may influence the oxygenation levels, but it is the vasculature changes that have the main impact on pO2. The purpose of our study was to monitor changes in tumor oxygenation after PDT and explore its significance for predicting long-term treatment response. PROCEDURES: Electron paramagnetic resonance (EPR) spectroscopy enables direct, quantitative, and sequential measurements of partial pressure of oxygen (pO2) in the same animal. The levels of chlorophyll derived photosensitizers in tumor tissue were determined by transdermal emission measurements. RESULTS: The noninvasive monitoring of pO2 in the tumor tissue after PDT showed that the higher ΔpO2 (pO2 after PDT minus pO2 before PDT), the greater the inhibition of tumor growth. ΔpO2 also correlated with higher levels of the photosensitizers in the tumor and with the occurrence of a severe edema/erythema after PDT. CONCLUSION: Monitoring of PDT-induced changes in tumor oxygenation is a valuable prognostic factor and could be also used to identify potentially resistant tumors, which is important in predicting long-term treatment response.

3.
Nat Commun ; 13(1): 2474, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513374

ABSTRACT

The endoperoxides of ß-carotene (ßCar-EPOs) are regarded as main products of the chemical deactivation of 1O2 by ß-carotene, one of the most important antioxidants, following a concerted singlet-singlet reaction. Here we challenge this view by showing that ßCar-EPOs are formed in the absence of 1O2 in a non-concerted triplet-triplet reaction: 3O2 + 3ß-carotene → ßCar-EPOs, in which 3ß-carotene manifests a strong biradical character. Thus, the reactivity of ß-carotene towards oxygen is governed by its excited triplet state. ßCar-EPOs, while being stable in the dark, are photochemically labile, and are a rare example of nonaromatic endoperoxides that release 1O2, again not in a concerted reaction. Their light-induced breakdown triggers an avalanche of free radicals, which accounts for the pro-oxidant activity of ß-carotene and the puzzling swap from its anti- to pro-oxidant features. Furthermore, we show that ßCar-EPOs, and carotenoids in general, weakly sensitize 1O2. These findings underlie the key role of the triplet state in determining the chemical and photophysical features of ß-carotene. They shake up the prevailing models of carotenoid photophysics, the anti-oxidant functioning of ß-carotene, and the role of 1O2 in chemical signaling in biological photosynthetic systems. ßCar-EPOs and their degradation products are not markers of 1O2 and oxidative stress but of the overproduction of extremely hazardous chlorophyll triplets in photosystems. Hence, the chemical signaling of overexcitation of the photosynthetic apparatus is based on a 3chlorophyll-3ß-carotene relay, rather than on extremely short-lived 1O2.


Subject(s)
Carotenoids , beta Carotene , Carotenoids/metabolism , Chlorophyll/metabolism , Oxygen , Photosynthesis , Reactive Oxygen Species , beta Carotene/metabolism
4.
Cancers (Basel) ; 14(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35053477

ABSTRACT

The breast cancer resistance protein (BCRP or ABCG2) involved in cancer multidrug resistance (MDR), transports many hydrophobic compounds, including a number of anti-cancer drugs. Our comprehensive study using a mouse model reveals that a subcutaneously growing tumor strongly affects the expression of BCRP in the host's normal organs on both the transcriptional and translational level. Additionally, the efflux of BCRP substrates is markedly enhanced. The levels of BCRP and its transcript in normal tissues distant from the tumor site correlate with tumor growth and the levels of cytokines in the peripheral blood. Thus, oncogenic stress causes transient systemic upregulation of BCRP in the host's normal tissues and organs, which is possibly mediated via cytokines. Because BCRP upregulation takes place in many organs as early as the initial stages of tumor development, it reveals a most basic mechanism that may be responsible for the induction of primary MDR. We hypothesize that such effects are not tumor-specific responses, but rather constitute a more universal defense strategy. The xenobiotic transporters are systemically mobilized due to various stresses, seemingly in a pre-emptive manner so that the body can be quickly and efficiently detoxified. Our findings shed new light on the biology of cancer and on the complexity of cancer-host interactions and are highly relevant to cancer therapies as well as to the design of new generations of therapeutics and personalized medicine.

5.
Eur J Pharm Sci ; 167: 106001, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517107

ABSTRACT

Breast cancer resistance protein (BCRP, ABCG2) is a member of the ATP-binding-cassette (ABC) superfamily of membrane transporters. It is involved in the efflux of a broad range of xenobiotics of highly diverse structures. BCRP activity greatly influences drug distribution in vivo and is often associated with cancer multidrug resistance, which is observed in the case of both chemotherapy and photodynamic therapy. The set of ABCG2 substrates includes porphyrins and chlorins such as heme, hemin, protoporphyrin IX, chlorin e6, pheophorbide a, and their derivatives. Here we provide an evidence that magnesium- and zinc-substituted derivatives of pheophorbide a, which are very promising photosensitizers for use in photodynamic therapy, are also recognized and transported by ABCG2. Interestingly, despite minor structural differences, they clearly differ in the transport rate, both between each other and compared to pheophorbide a. In addition, their transport rate, like those of other structurally similar compounds, is strictly dependent on the level of serum albumin in the extracellular environment. The results that we present here are crucial for the use of metal-substituted pheophorbides in clinical practice but also provide an important insight into the mechanism of porphyrin transport by ABCG2.


Subject(s)
Neoplasm Proteins , Photosensitizing Agents , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters , Albumins , Chlorophyll , Drug Resistance, Neoplasm , Neoplasm Proteins/metabolism , Photosensitizing Agents/pharmacology
6.
Chemphyschem ; 22(4): 344-348, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33351996

ABSTRACT

The extensive speciation of copper(II) chloride in organic solvents varies with concentration, temperature, pressure and oxygen content, providing the ability to switch between different chlorophyll transmetalation pathways. We found that one of them is exceptionally suitable for the formation and stabilisation of the chlorophyll π-cation radical. This is due to unique redox cycling, which is coupled to the generation and transformation of various reactive oxygen species. In the presence of a proton donor, our system shows behavior which resembles that of superoxide dismutase (SOD). Regardless of light, chlorophyll acts as an electron transfer mediator.


Subject(s)
Chlorophyll A/chemistry , Free Radicals/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Density Functional Theory , Superoxide Dismutase/chemistry , Superoxides/chemistry
7.
Redox Biol ; 34: 101566, 2020 07.
Article in English | MEDLINE | ID: mdl-32464500

ABSTRACT

Divalent copper and iron cations have been acknowledged for their catalytic roles in physiological processes critical for homeostasis maintenance. Being redox-active, these metals act as cofactors in the enzymatic reactions of electron transfer. However, under pathophysiological conditions, owing to their high redox potentials, they may exacerbate stress-induced injury. This could be particularly hazardous to the liver - the main body reservoir of these two metals. Surprisingly, the involvement of Cu and Fe in liver pathology still remains poorly understood. Hypoxic stress in the tissue may act as a stimulus that mobilizes these ions from their hepatic stores, aggravating the systemic injury. Since ischemia poses a serious complication in liver surgery (e.g. transplantation) we aimed to reveal the status of Cu and Fe via spectroscopic analysis of mouse ischemic liver tissue. Herein, we establish a novel non-surgical model of focal liver ischemia, achieved by applying light locally when a photosensitizer is administered systemically. Photodynamic treatment results in clear-cut areas of the ischemic hepatic tissue, as confirmed by ultrasound scans, mean velocity measurements, 3D modelling of vasculature and (immuno)histological analysis. For reference, we assessed the samples collected from the animals which developed transient systemic endotoxemic stress induced by a non-lethal dose of lipopolysaccharide. The electron paramagnetic resonance (EPR) spectra recorded in situ in the liver samples reveal a dramatic increase in the level of Cu adducts solely in the ischemic tissues. In contrast, other typical free radical components of the liver EPR spectra, such as reduced Riske clusters are not detected; these differences are not followed by changes in the blood EPR spectra. Taken together, our results suggest that local ischemic stress affects paramagnetic species containing redox-active metals. Moreover, because in our model hepatic vascular flow is impaired, these effects are only local (confined to the liver) and are not propagated systemically.


Subject(s)
Copper , Iron , Animals , Electron Spin Resonance Spectroscopy , Ischemia , Liver , Mice , Oxidation-Reduction
8.
Materials (Basel) ; 12(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671513

ABSTRACT

The LH1 complex is the major light-harvesting antenna of purple photosynthetic bacteria. Its role is to capture photons, and then store them and transfer the excitation energy to the photosynthetic reaction center. The structure of LH1 is modular and it cooperatively self-assembles from the subunits composed of short transmembrane polypeptides that reversibly bind the photoactive cofactors: bacteriochlorophyll and carotenoid. LH1 assembly, the intra-complex interactions and the light-harvesting features of LH1 can be controlled in micellar media by varying the surfactant concentration and by adding carotenoid and/or a co-solvent. By exploiting this approach, we can manipulate the size of the assembly, the intensity of light absorption, and the energy and lifetime of its first excited singlet state. For instance, via the introduction of Ni-substituted bacteriochlorophyll into LH1, the lifetime of this electronic state of the antenna can be shortened by almost three orders of magnitude. On the other hand, via the exchange of carotenoid, light absorption in the visible range can be tuned. These results show how in a relatively simple self-assembling pigment-polypeptide system a sophisticated functional tuning can be achieved and thus they provide guidelines for the construction of bio-inspired photoactive nanodevices.

9.
J R Soc Interface ; 16(158): 20190191, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31480924

ABSTRACT

In carotenoids, by analogy to polyenes, the symmetry of the π-electron system is often invoked to explain their peculiar electronic features, in particular the inactivity of the S0 → S1 transition in one-photon excitation. In this review, we verify whether the molecular symmetry of carotenoids and symmetry of their π-electron system are supported in experimental and computational studies. We focus on spectroscopic techniques which are sensitive to the electron density distribution, including the X-ray crystallography, electronic absorption, two-photon techniques, circular dichroism, nuclear magnetic resonance, Stark and vibrational spectroscopies, and on this basis we seek for the origin of inactivity of the S1 state. We come across no experimental and computational evidence for the symmetry effects and the existence of symmetry restrictions on the electronic states of carotenoids. They do not possess an inversion centre and the C2h symmetry approximation of carotenoid structure is by no means justified. In effect, the application of symmetry rules (and notification) to the electronic states of carotenoids in this symmetry group may lead to a wrong interpretation of experimental data. This conclusion together with the results summarized in the review allows us to advance a consistent model that explains the inactivity of the S0 → S1 transition. Within this model, S1 is never accessible from S0 due to the negative synergy of (i) the contributions of double excitations of very low probability, which elevate S1 energy, and (ii) a non-verticality of the S0 → S1 transition, due to the breaking of Born-Oppenheimer approximation. Certainly, our simple model requires a further experimental and theoretical verification.


Subject(s)
Carotenoids/chemistry , Models, Molecular
10.
Food Chem ; 285: 53-58, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30797375

ABSTRACT

The aim of this study was to evaluate the impact of selected types of LED (light emitting diodes) lighting on the quality of alfalfa sprouts. In the experiment, cold white, warm white and multicolour: (red, green, blue-RGB) LEDs were applied, and dispersed sunlight was used as a control. The product was examined for the yield and the contents of dry matter, total polyphenols, ascorbic acid, chlorophylls, ß-carotene, lutein, neoxanthin and violaxanthin. Cotyledons' mass in the whole plant increased under LED illumination and was up to 50% greater for sprouts grown in RGB light compared to those cultivated in dispersed sunlight. The highest chlorophyll and carotenoid pigment contents in cotyledons were observed under RGB LED and cold white treatments. Similarly, RGB LEDs allows one to obtain the product with the highest level of total phenolic compounds. The highest ascorbic acid content was observed in sprouts growing under sunlight, followed by RGB.


Subject(s)
Light , Medicago sativa/metabolism , Chlorophyll/analysis , Chromatography, High Pressure Liquid , Germination/radiation effects , Lutein/analysis , Medicago sativa/chemistry , Medicago sativa/growth & development , Polyphenols/analysis , Polyphenols/chemistry , Seedlings/chemistry , Seedlings/metabolism , Xanthophylls/analysis , beta Carotene/analysis
11.
Angew Chem Int Ed Engl ; 57(22): 6501-6506, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29601118

ABSTRACT

Ab initio DFT computations reveal that the essential structural and photophysical features of the conjugated π-electron system of retinal and carotenoids are dictated by "innocent" methyl substituents. These methyl groups shape the conformation and symmetry of the isoprenoid chromophores by causing a sigmoidal distortion of the polyene skeleton and increasing its flexibility, which facilitates fitting to their binding pockets in proteins. Comparison of in vacuo conformations of the chromophores with their native (protein-bound) conformations showed, surprisingly, that the peripheral groups and interactions with the protein environment are much less significant than the methyl side groups in tuning their structural features. The methyl side groups also contribute to a loss of symmetry elements specific to linear polyenes. In effect, the symmetry-imposed restrictions on the chromophore electronic properties are disabled, which is of tremendous relevance to their photophysics. This is evidenced by their non-negligible permanent dipole moments and by the simulated and experimentally measured circular dichroism spectra, which necessarily reflect the chirality of the conjugated π-electron system.


Subject(s)
Terpenes/chemistry , Density Functional Theory , Lycopene/chemistry , Molecular Conformation , Retinaldehyde/analogs & derivatives , Retinaldehyde/chemistry , beta Carotene/chemistry
12.
Acta Biochim Pol ; 64(3): 437-443, 2017.
Article in English | MEDLINE | ID: mdl-28880970

ABSTRACT

All organisms are exposed to numerous stress factors, which include harmful xenobiotics. The diversity of these compounds is enormous, thus in the course of evolution diverse biological defense mechanisms at various levels of organization have developed. One of them engages an evolutionarily conserved family of transporters from the ABC superfamily, found in most species - from bacteria to humans. An important example of such a transporter is the breast cancer resistance protein (BCRP/ABCG2), a typical integral membrane protein. It plays a key role in the absorption, distribution and elimination of a wide variety of xenobiotics, including drugs used in chemotherapy, and is involved in multidrug resistance. It also protects against phototoxic chlorophyll derivatives of dietary origin. BCRP is a hemitransporter which consists of one transmembrane domain, made of six alpha-helices forming a characteristic pore structure, and one ATP-binding domain, which provides the energy from ATP hydrolysis, required for active transport of the substrates. The isolation of BCRP is still not an easy task, because its insolubility in water and the presence of membrane rafts pose serious methodological and technical challenges during the purification. The aim of this study was to optimize the methods for detection and isolation of BCRP-enriched fractions obtained from animal tissue samples. In this report we describe an optimization of isolation of a BCRP-enriched membrane fraction, which is suitable for further protein quantitative and qualitative analysis using the molecular biology tools.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/analysis , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Blotting, Western/methods , ATP Binding Cassette Transporter, Subfamily G, Member 2/immunology , ATP Binding Cassette Transporter, Subfamily G, Member 2/isolation & purification , Animals , Detergents/chemistry , Epitopes/immunology , Immunohistochemistry/methods , Kidney/metabolism , Male , Mice, Inbred DBA , Xenobiotics/pharmacokinetics
13.
Angew Chem Int Ed Engl ; 56(35): 10457-10461, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28657653

ABSTRACT

Photosynthetic energy conversion competes with the formation of chlorophyll triplet states and the generation of reactive oxygen species. These may, especially under high light stress, damage the photosynthetic apparatus. Many sophisticated photoprotective mechanisms have evolved to secure a harmless flow of excitation energy through the photosynthetic complexes. Time-resolved laser-induced optoacoustic spectroscopy was used to compare the properties of the T1 states of pheophytin a and its metallocomplexes. The lowest quantum yield of the T1 state is always observed in the Mg complex, which also shows the least efficient energy transfer to O2 . Axial coordination to the central Mg further lowers the yield of both T1 and singlet oxygen. These results reveal the existence of intrinsic photoprotective mechanisms in chlorophylls, embedded in their molecular design, which substantially suppress the formation of triplet states and the efficiency of energy transfer to O2 , each by 20-25 %. Such intrinsic photoprotective effects must have created a large evolutionary advantage for the Mg complexes during their evolution as the principal photoactive cofactors of photosynthetic proteins.


Subject(s)
Chlorophyll/chemistry , Protective Agents/chemistry , Energy Transfer , Molecular Structure , Oxygen/chemistry , Photochemical Processes , Quantum Theory
14.
Anal Bioanal Chem ; 409(6): 1493-1501, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27888314

ABSTRACT

The choice between bare and coated capillaries is a key decision in the development and use of any methods based on capillary electrophoresis. In this work several permanently and dynamically coated capillaries were successfully implemented in a previously developed micellar electrokinetic chromatography (MEKC) assay of the plant membrane enzyme chlorophyllase. The results obtained demonstrate the rationale behind the use of capillary coating, which is crucial for successful optimization of both the off-line mode and the on-line/electrophoretically mediated microanalysis assay mode. The application of an amine permanently coated capillary (eCAP) is a simple way to significantly increase the repeatability of migration times and peak areas, and to ensure a strong electroosmotic flow that considerably decreases the overall analysis time. A dynamic coating (CEofix) allows one to apply an on-line incubation to control the reaction progress inside the capillary, and to increase the signal-to-noise ratio and peak efficiency. The dynamic coating is possible with use of both the normally applied uncoated silica capillary and the precoated amine capillary, which ensures more repeatable migration times. The strong points of the uncoated silica capillary are its attractive price and wide range of pH that can be applied. The characteristics presented may simplify the choice of capillary modification, especially in the case of hydrophobic analytes, MEKC-based separations, and other enzymatic assays.


Subject(s)
Carboxylic Ester Hydrolases/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Electrophoresis, Capillary/methods , Enzyme Assays/methods , Plants/enzymology , Carboxylic Ester Hydrolases/metabolism , Chlorophyll/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Plants/metabolism
16.
J Phys Chem Lett ; 7(10): 1821-9, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27138647

ABSTRACT

The aim of this work is the verification of symmetry effects on the electronic absorption spectra of carotenoids. The symmetry breaking in cis-ß-carotenes and in carotenoids with nonlinear π-electron system is of virtually no effect on the dark transitions in these pigments, in spite of the loss of the inversion center and evident changes in their electronic structure. In the cis isomers, the S2 state couples with the higher excited states and the extent of this coupling depends on the position of the cis bend. A confrontation of symmetry properties of carotenoids with their electronic absorption and IR and Raman spectra shows that they belong to the C1 or C2 but not the C2h symmetry group, as commonly assumed. In these realistic symmetries all the electronic transitions are symmetry-allowed and the absence of some transitions, such as the dark S0 → S1 transition, must have another physical origin. Most likely it is a severe deformation of the carotenoid molecule in the S1 state, unachievable directly from the ground state, which means that the Franck-Condon factors for a vertical S0 → S1 transition are negligible because the final state is massively displaced along the vibrational coordinates. The implications of our findings have an impact on the understanding of the photophysics and functioning of carotenoids.


Subject(s)
Carotenoids/chemistry , Electron Transport , Molecular Structure
17.
J Fluoresc ; 25(6): 1867-74, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26438659

ABSTRACT

This work presents spectroscopic studies of the keto-enol equilibrium induced by solvent polarizability in 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol a strong antiproliferative and anticancer thiadiazol derivative. Electronic absorption, steady state and time resolved fluorescence, and infrared spectroscopies were applied to investigate the keto and enol forms of this compound in a series of polar and non-polar solvents. The enol form dominates in polar solvents while, surprisingly, the keto form dominates in non-polar solvents with high average electric dipole polarizability e.g. n-alkenes. The electronic absorption spectrum of this derivative is more dependent on spatially averaged electric dipole polarizability of the solvent than on Kirkwood's correlation or on Lorenz-Lorenz electric polarizability. By analogy of n-alkanes to the alkyl parts of lipids, one can expect that the transformation of 1,3,4-thiadiazoles to the keto form may be facilitated in the hydrophobic core of the lipid membrane. Such a transition may be of great practical importance for the design of biologically active pharmaceutics, which are able to interact with the hydrophobic regions of cell membranes in a specific manner.


Subject(s)
Alkenes/chemistry , Resorcinols/chemistry , Solvents/chemistry , Thiadiazoles/chemistry , Isomerism , Spectrometry, Fluorescence
18.
Curr Med Chem ; 22(26): 3054-74, 2015.
Article in English | MEDLINE | ID: mdl-26282940

ABSTRACT

Since photodynamic therapy emerged as a promising cancer treatment, the development of photosensitizers has gained great interest. In this context, the photosynthetic pigments, chlorophylls and bacteriochlorophylls, as excellent natural photosensitizers, attracted much attention. In effect, several (bacterio) chlorophyll-based phototherapeutic agents have been developed and (or are about to) enter the clinics. The aim of this review article is to give a survey of the advances in the synthetic chemistry of these pigments which have been made over the last decade, and which are pertinent to the application of their derivatives as photosensitizers for photodynamic therapy (PDT). The review focuses on the synthetic strategies undertaken to obtain novel derivatives of (bacterio)chlorophylls with both enhanced photosensitizing and tumorlocalizing properties, and also improved photo- and chemical stability. These include modifications of the C- 17-ester moiety, the isocyclic ring, the central binding pocket, and the derivatization of peripheral functionalities at the C-3 and C-7 positions with carbohydrate-, peptide-, and nanoparticle moieties or other residues. The effects of these modifications on essential features of the pigments are discussed, such as the efficiency of reactive oxygen species generation, photostability, phototoxicity and interactions with living organisms. The review is divided into several sections. In the first part, the principles of PDT and photosensitizer action are briefly described. Then the relevant photophysical features of (bacterio)chlorophylls and earlier approaches to their modification are summarized. Next, a more detailed overview of the progress in synthetic methods is given, followed by a discussion of the effects of these modifications on the photophysics of the pigments and on their biological activity.


Subject(s)
Bacteriochlorophylls/chemistry , Bacteriochlorophylls/pharmacology , Chlorophyll/chemistry , Chlorophyll/pharmacology , Drug Discovery/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Animals , Bacteriochlorophylls/therapeutic use , Chlorophyll/therapeutic use , Humans , Photochemotherapy , Photosensitizing Agents/therapeutic use
19.
Dalton Trans ; 44(13): 6012-22, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25720308

ABSTRACT

The nature of chlorophyll interactions with copper(II) ions varies considerably in organic solvents, depending on the dominant coordinative form. Besides formation of the metallo tetrapyrrolic complex, Cu(II) ions can cause oxidation of the pigment, reversible or irreversible, which can lead to the destruction of the macrocyclic structure. All these reaction types can be distinguished within a quite narrow range of reaction conditions. The ability to form new metallo derivatives in either metalation or transmetalation reactions is obviously limited by the concentration of the potential oxidant, but can be secured below this level via suitable composition of the reaction system. The decisive factor in the selection of a specific reaction pathway is the presence of a potential ligand that can affect the reactivity of Cu(II) for example by shifting its redox potential. Spectroscopic and electrochemical studies were performed in order to determine the predominant species of Cu(II) in methanol, nitromethane and acetonitrile in the presence of chloride and acetate ions, as well as to assign their appropriate oxidizing ability. This allowed us to estimate the boundary conditions for the electron transfer processes in chlorophyll-Cu(II) systems. Chlorophyll and its free base can undergo both types of electron transfer processes, however, they reveal different susceptibilities that make this class of ligands quite versatile markers in tuning the reactivity of metal ions in solutions.


Subject(s)
Chlorophyllides/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Methane/chemistry , Solvents/chemistry , Molecular Structure , Oxidation-Reduction
20.
Molecules ; 19(10): 15938-54, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25286377

ABSTRACT

Practical applications of photosynthesis-inspired processes depend on a thorough understanding of the structures and physiochemical features of pigment molecules such as chlorophylls and bacteriochlorophylls. Consequently, the major structural features of these pigments have been systematically examined as to how they influence the S1 state energy, lifetimes, quantum yields, and pigment photostability. In particular, the effects of the macrocyclic π-electron system, central metal ion (CMI), peripheral substituents, and pigment aggregation, on these critical parameters are discussed. The results obtained confirm that the π-electron system of the chromophore has the greatest influence on the light energy conversion capacity of porphyrinoids. Its modifications lead to changes in molecular symmetry, which determine the energy levels of frontier orbitals and hence affect the S1 state properties. In the case of bacteriochlorophylls aggregation can also strongly decrease the S1 energy. The CMI may be considered as another influential structural feature which only moderately influences the ground-state properties of bacteriochlorophylls but strongly affects the singlet excited-state. An introduction of CMIs heavier than Mg2+ significantly improves pigments' photostabilities, however, at the expense of S1 state lifetime. Modifications of the peripheral substituents may also influence the S1 energy, and pigments' redox potentials, which in turn influence their photostability.


Subject(s)
Chlorophyll/chemistry , Photosynthesis , Solar Energy , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...