Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798574

ABSTRACT

When we speak, we not only make movements with our mouth, lips, and tongue, but we also hear the sound of our own voice. Thus, speech production in the brain involves not only controlling the movements we make, but also auditory and sensory feedback. Auditory responses are typically suppressed during speech production compared to perception, but how this manifests across space and time is unclear. Here we recorded intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy who performed a reading/listening task to investigate how other auditory responses are modulated during speech production. We identified onset and sustained responses to speech in bilateral auditory cortex, with a selective suppression of onset responses during speech production. Onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, the posterior insula responded at sentence onset for both perception and production, suggesting a role in multisensory integration during feedback control.

2.
Front Hum Neurosci ; 16: 1001171, 2022.
Article in English | MEDLINE | ID: mdl-36741776

ABSTRACT

In many experiments that investigate auditory and speech processing in the brain using electroencephalography (EEG), the experimental paradigm is often lengthy and tedious. Typically, the experimenter errs on the side of including more data, more trials, and therefore conducting a longer task to ensure that the data are robust and effects are measurable. Recent studies used naturalistic stimuli to investigate the brain's response to individual or a combination of multiple speech features using system identification techniques, such as multivariate temporal receptive field (mTRF) analyses. The neural data collected from such experiments must be divided into a training set and a test set to fit and validate the mTRF weights. While a good strategy is clearly to collect as much data as is feasible, it is unclear how much data are needed to achieve stable results. Furthermore, it is unclear whether the specific stimulus used for mTRF fitting and the choice of feature representation affects how much data would be required for robust and generalizable results. Here, we used previously collected EEG data from our lab using sentence stimuli and movie stimuli as well as EEG data from an open-source dataset using audiobook stimuli to better understand how much data needs to be collected for naturalistic speech experiments measuring acoustic and phonetic tuning. We found that the EEG receptive field structure tested here stabilizes after collecting a training dataset of approximately 200 s of TIMIT sentences, around 600 s of movie trailers training set data, and approximately 460 s of audiobook training set data. Thus, we provide suggestions on the minimum amount of data that would be necessary for fitting mTRFs from naturalistic listening data. Our findings are motivated by highly practical concerns when working with children, patient populations, or others who may not tolerate long study sessions. These findings will aid future researchers who wish to study naturalistic speech processing in healthy and clinical populations while minimizing participant fatigue and retaining signal quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...