Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Environ Sci Technol ; 58(3): 1659-1668, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38198694

ABSTRACT

Historical practices at firefighter-training areas involved repeated aqueous film-forming foams (AFFFs) applications, resulting in source zones characterized by high concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS). Repeated applications of AFFF composed of 14 anionic and 23 zwitterionic perfluoroalkyl substances (PFAS) were conducted on a single one-dimensional saturated soil column to quantify PFAS retention. An electrofluorination-based (3M) Milspec AFFF, which was above the mixture's critical micelle concentration (CMC), was at application strength (3%, v/v). Retention and retardation of PFAS mass increased with each successive AFFF addition, although the PFAS concentration profiles for subsequent applications differed from the initial. Greater degree of mass retention and retardation correlated with longer PFAS carbon-fluorine chain length and charged-headgroup type and as a function of AFFF application number. Anionic PFAS were increasingly retained with each subsequent AFFF application, while zwitterionic PFAS exhibited an alternating pattern of sorption and desorption. Surfactant-surfactant adsorption and competition during repeat AFFF applications that are at concentrations above the CMC resulted in adsorbed PFAS from the first application, changing the nature of the soil surface with preferential sorption of anionic PFAS and release of zwitterionic PFAS due to competitive elution. Applying a polyparameter quantitative structure-property relationship developed to describe sorption of AFFF-derived PFAS to uncontaminated, saturated soil was attempted for our experimental conditions. The model had been derived for data where AFFF is below the apparent CMC and our experimental conditions that included the presence of mixed micelles (aggregates consisting of different kinds of surfactants that exhibit characteristics properties different from micelles composed of a single surfactant) resulted in overall PFAS mass retained by an average of 27.3% ± 2.7% (standard error) above the predicted values. The correlation was significantly improved by adding a "micelle parameter" to account for cases where the applied AFFF was above the apparent CMC. Our results highlight the importance of interactions between the AFFF components that can only be investigated by employing complex PFAS mixtures at concentrations present in actual AFFF at application strength, which are above their apparent CMC. In firefighter-training areas (AFFF source zones), competitive desorption of PFAS may result in downgradient PFAS retention when desorbed PFAS become resorbed to uncontaminated soil.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Micelles , Soil , Water Pollutants, Chemical/analysis , Water , Surface-Active Agents
3.
Environ Sci Technol ; 57(38): 14351-14362, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37696050

ABSTRACT

This study elucidates per- and polyfluoroalkyl substance (PFAS) fingerprints for specific PFAS source types. Ninety-two samples were collected from aqueous film-forming foam impacted groundwater (AFFF-GW), landfill leachate, biosolids leachate, municipal wastewater treatment plant effluent (WWTP), and wastewater effluent from the pulp and paper and power generation industries. High-resolution mass spectrometry operated with electrospray ionization in negative mode was used to quantify up to 50 target PFASs and screen and semi-quantify up to 2,266 suspect PFASs in each sample. Machine learning classifiers were used to identify PFASs that were diagnostic of each source type. Four C5-C7 perfluoroalkyl acids and one suspect PFAS (trihydrogen-substituted fluoroethernonanoic acid) were diagnostic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and suspect PFASs that can be used for source allocation.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Biosolids , Acetic Acid , Machine Learning
5.
Environ Toxicol Chem ; 42(10): 2229-2236, 2023 10.
Article in English | MEDLINE | ID: mdl-37294059

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment. Locations where PFAS-containing aqueous film-forming foam (AFFF) has been used or accidentally released have resulted in persistently high concentrations of PFAS, including in surface water that may be adjacent to release sites. Perfluorooctane sulfonic acid (PFOS) is most frequently measured near AFFF release sites; however, other PFAS are being quantified more frequently and, of those, perfluorononanoic acid (PFNA) is common. The goal of our study was to fill data gaps on PFNA toxicity to freshwater fish using the fathead minnow (Pimephales promelas). We aimed to understand how PFNA may impact apical endpoints following a 42-day exposure to mature fish and a 21-day exposure to second-generation larval fish. Exposure concentrations were 0, 124, 250, 500, and 1000 µg/L for both adult (F0) and larval (F1) generations. The most sensitive endpoint measured was development in the F1 generation at concentrations of ≥250 µg/L. The 10% and 20% effective concentration of the tested population for the F1 biomass endpoint was 100.3 and 129.5 µg/L, respectively. These data were collated with toxicity values from the primary literature on aquatic organisms exposed to PFNA for subchronic or chronic durations. A species sensitivity distribution was developed to estimate a screening-level threshold for PFNA. The resulting hazard concentration protective of 95% of the freshwater aquatic species was 55 µg PFNA/L. Although this value is likely protective of aquatic organisms exposed to PFNA, it is prudent to consider that organisms experience multiple stressors (including many PFAS) simultaneously; an approach to understand screening-level thresholds for PFAS mixtures remains an uncertainty within the field of ecological risk assessment. Environ Toxicol Chem 2023;42:2229-2236. © 2023 SETAC.


Subject(s)
Alkanesulfonic Acids , Cyprinidae , Fluorocarbons , Water Pollutants, Chemical , Animals , Fluorocarbons/toxicity , Fluorocarbons/analysis , Larva , Fatty Acids , Aquatic Organisms , Water , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 880: 163149, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37011692

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated compounds with many industrial applications, for instance as ingredients in fire-suppressing aqueous film-forming foams (AFFF). Several PFAS have been demonstrated to be persistent, bioaccumulative and toxic. This study better characterizes the bioaccumulation of PFAS in freshwater fish through a spatial and temporal analysis of surface water and sediment from a stormwater pond in a former Naval air station (NAS) with historic AFFF use. We sampled environmental media from four locations twice per week for five weeks and sampled fish at the end of the sampling effort. The primary PFAS identified in surface water, sediment, and biota were perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) followed by perfluorooctanoic acid (PFOA) in environmental media and perfluoroheptane sulfonate (PFHpS) in biota. We observed significant temporal variability in surface water concentrations at the pond headwaters following stochastic events such as heavy rainfall for many compounds, particularly PFHxS. Sediment concentrations varied most across sampling locations. In fish, liver tissue presented the highest concentrations for all compounds except PFHxS, which was highest in muscle tissue, suggesting the influence of fine-scale aqueous PFAS fluctuations on tissue distribution. Calculated log bioaccumulation factors (BAFs) ranged from 0.13 to 2.30 for perfluoroalkyl carboxylates (PFCA) and 0.29-4.05 for perfluoroalkane sulfonates (PFSA) and fluctuated greatly with aqueous concentrations. The variability of PFAS concentrations in environmental media necessitates more frequent sampling efforts in field-based studies to better characterize PFAS contamination in aquatic ecosystems as well as exercising caution when considering single time-point BAFs due to uncertainty of system dynamics.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Ponds , Ecosystem , Bioaccumulation , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Fishes , Water/analysis , Alkanesulfonic Acids/analysis , Alkanesulfonates , Lakes
7.
Environ Sci Technol ; 57(13): 5231-5242, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36947878

ABSTRACT

A comprehensive, generalized approach to predict the retention of per- and polyfluoroalkyl substances (PFAS) from aqueous film-forming foam (AFFF) by a soil matrix as a function of PFAS molecular and soil physiochemical properties was developed. An AFFF with 34 major PFAS (12 anions and 22 zwitterions) was added to uncontaminated soil in one-dimensional saturated column experiments and PFAS mass retained was measured. PFAS mass retention was described using an exhaustive statistical approach to generate a poly-parameter quantitative structure-property relationship (ppQSPR). The relevant predictive properties were PFAS molar mass, mass fluorine, number of nitrogens in the PFAS molecule, poorly crystalline Fe oxides, organic carbon, and specific (BET-N2) surface area. The retention of anionic PFAS was nearly independent of soil properties and largely a function of molecular hydrophobicity, with the size of the fluorinated side chain as the main predictor. Retention of nitrogen-containing zwitterionic PFAS was related to poorly crystalline metal oxides and organic carbon content. Knowledge of the extent to which a suite of PFAS may respond to variations in soil matrix properties, as developed here, paves the way for the development of reactive transport algorithms with the ability to capture PFAS dynamics in source zones over extended time frames.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Soil , Water Pollutants, Chemical/analysis , Minerals , Water , Carbon
8.
Environ Sci Technol ; 57(12): 4951-4958, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917694

ABSTRACT

Exposures to per- and polyfluoroalkyl substances (PFAS) are of increasing concern. Assessments typically focus only on ingestion and inhalation exposure due to a lack of generally accepted approaches for estimating dermal absorption. Prior work indicates limited dermal absorption of ionic PFAS, but absorption of neutral PFAS has not been examined from the liquid vehicle or from vapor. Partitioning of semivolatile organic compounds from the gas phase to the skin surface (i.e., stratum corneum) is well known, but the potential for partitioning of neutral PFAS from the gas phase to the stratum corneum has yet to be estimated. The SPARC-estimated physicochemical properties were used to calculate transdermal permeability coefficients (kp_g) and dermal-to-inhalation (D/I) exposure ratios for two groups of neutral PFAS, including those on a U.S. Environmental Protection Agency PFAS list. 11 neutral PFAS gave calculated D/I ratios >5, indicating that direct transdermal absorption may be an important exposure pathway compared to inhalation. Data on consumer products or indoor air is needed for the 11 neutral PFAS, followed by possible biomonitoring to experimentally verify dermal absorption from air. Additional PFAS should be estimated by the protocol used here as they are identified in commercial products.


Subject(s)
Air Pollution, Indoor , Fluorocarbons , Skin Absorption , Organic Chemicals , Inhalation Exposure/analysis , Fluorocarbons/analysis
10.
Environ Sci Technol ; 56(23): 17070-17079, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36367233

ABSTRACT

Paints are widely used in indoor settings yet there are no data for volatile per- and polyfluoroalkyl substances (PFAS) for paints or knowledge if paints are potentially important sources of human exposure to PFAS. Different commercial paints (n = 27) were collected from local hardware stores and analyzed for volatile PFAS by gas chromatography-mass spectrometry (GC-MS), nonvolatile PFAS by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qTOF), and total fluorine by 19F nuclear magnetic resonance spectroscopy (NMR). Diluted paint required clean up to remove 6:2 fluorotelomer phosphate diester (diPAP), which thermally transforms into 6:2 FTOH at 280 °C (GC inlet temperature). Only 6:2 FTOH (0.9-83 µg/g) and 6:2 diPAP (0.073-58 µg/g) were found in five exterior and nine interior paints and only accounted for a maximum of 17% of total fluorine. Upon drying, 40% of the FTOH mass was lost, and the loss was verified by measurements of the cumulative FTOH mass measured in the air of a small, confined space over a 3 h period. Based on the liquid paint results, the ConsExpo model was used for potential exposure assessment and one commercial paint exceeded the chosen reference dose (5 µg/kg-day) for children and adults, indicating the potential for human exposure during painting.


Subject(s)
Fluorocarbons , Inhalation Exposure , Child , Humans , Inhalation Exposure/analysis , Fluorocarbons/analysis , Fluorine/analysis , Paint , Gas Chromatography-Mass Spectrometry
11.
Environ Sci Technol ; 56(22): 15470-15477, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36265138

ABSTRACT

Anion-exchange (AE) sorbents are gaining in popularity for the remediation of anionic per- and polyfluoroalkyl substances (PFAS) in water. However, it is unclear how hydrophobic and electrostatic interactions contribute to anionic PFAS retention. The goal of this study was to understand the effects of PFAS chain length and head group on electrostatic interactions between PFAS and an aminopropyl AE phase. Liquid chromatography-mass spectrometry (LC-MS) was used with an aminopropyl AE guard column to find relative retention times. The average electrostatic potential (EPavg) of each PFAS was calculated, which correlated positively with the PFAS chromatographic retention time, demonstrating the value of EPavg as a proxy for predicting electrostatic interactions between PFAS and the aminopropyl AE phase. The order of greatest to lowest PFAS AE affinity for an aminopropyl column based on chromatographic retention times and electrostatic interactions was n:3 fluorotelomer carboxylic acids (n:3 FtAs) > n:2 fluorotelomer carboxylic acids (n:2 FtAs) > perfluoroalkyl carboxylates (PFCAs) > perfluoroalkyl sulfonamides (FASAs) ∼ n:2 fluorotelomer sulfonates (n:2 FtSs) > perfluoroalkyl sulfonates (PFSAs). This study introduces a methodology for qualitatively characterizing electrostatic interactions between PFAS and AE phases and highlights that electrostatic interactions alone cannot explain the affinity of PFAS for AE resins in water treatment/remediation scenarios.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Carboxylic Acids/analysis , Anions
14.
J Hazard Mater ; 440: 129782, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35988483

ABSTRACT

Bench-scale experiments were performed to interrogate poly- and perfluoroalkyl substance (PFAS) enrichment in the water surface microlayer (SML). In initial experiments using electrolyte-only solutions, the perfluorooctane sulfonate (PFOS) and perfluorooctane carboxylate (PFOA) enrichment in the SML were reasonably (with a factor of 2) described by the Gibbs adsorption equation coupled with a Freundlich-based interfacial adsorption model. Enrichment in the SML among perfluorinated sulfonates and perfluorinated carboxylates of varying chain lengths was proportional to their surface activity. The PFOS enrichment factor (EF), defined as the PFAS concentration in the SML divided by the concentration in the bulk water, was 18 in a 200 mg/l NaCl solution. The presence of elevated organic carbon levels in synthetic surface waters inhibited PFAS accumulation in the SML, with resulting EF values of approximately 1 for all PFAS. However, in the presence of elevated organic levels coupled with foam, PFAS enrichment in the foam was observed, with a foam EF of 25 measured for PFOS in synthetic surface waters. PFAS EF values measured in several natural surface waters without foam showed little variation among the waters tested, with PFOS EF values ranging between 6 and 10. Together, these results suggest that PFAS accumulation in the SML is largely controlled by PFAS sorption at the air-water interface for the conditions examined in this study, and the presence of foam with natural organics enhances PFAS uptake at the water surface.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Aerosols , Carbon , Fluorocarbons/analysis , Sodium Chloride , Water , Water Pollutants, Chemical/analysis
15.
Toxics ; 10(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35878277

ABSTRACT

Ubiquitous anthropogenic contaminants of concern, per- and polyfluoroalkyl substances (PFAS) are frequently detected in the environment and human populations around the world. Diet is a predominate route of human exposure, and PFAS are frequently measured in food. Manufacturing trends have shifted from legacy PFAS to shorter-chain alternatives that are suggested to be safer, such as perfluorohexanoic acid (PFHxA). However, the current amount of data to support safety assessments of these alternatives is not yet sufficient. The present study investigated the effects of a 42-day dietary exposure to 1, 10, or 100 ng/g PFHxA in juvenile zebrafish. The zebrafish model was leveraged to interrogate morphometrics, fecundity, and numerous behavior endpoints across multiple generations. Dietary PFHxA exposure did not result in measurable body burden and did not affect growth, fecundity, adult social perception behavior, or associative learning. PFHxA exposure did induce abnormal adult anxiety behaviors in the F0 generation that persisted transgenerationally in the F1 and F2. Abnormal larval and juvenile behavior was observed in the F1 generation, but not in the F2. PFHxA juvenile dietary exposure induced subtle and multigenerational behavior effects that warrant further investigation of this and other alternative short-chain PFAS.

16.
Environ Sci Technol ; 56(15): 10646-10655, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35861429

ABSTRACT

Despite the prevalence of nitrate reduction in groundwater, the biotransformation of per- and polyfluoroalkyl substances (PFAS) under nitrate-reducing conditions remains mostly unknown compared with aerobic or strong reducing conditions. We constructed microcosms under nitrate-reducing conditions to simulate the biotransformation occurring at groundwater sites impacted by aqueous film-forming foams (AFFFs). We investigated the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a principal PFAS constituent of several AFFF formulations using both quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) and qualitative high-resolution mass spectrometry analyses. Our results reveal that the biotransformation rates of 6:2 FtTAoS under nitrate-reducing conditions were about 10 times slower than under aerobic conditions, but about 2.7 times faster than under sulfate-reducing conditions. Although minimal production of 6:2 fluorotelomer sulfonate and the terminal perfluoroalkyl carboxylate, perfluorohexanoate was observed, fluorotelomer thioether and sulfinyl compounds were identified in the aqueous samples. Evidence for the formation of volatile PFAS was obtained by mass balance analysis using the total oxidizable precursor assay and detection of 6:2 fluorotelomer thiol by gas chromatography-mass spectrometry. Our results underscore the complexity of PFAS biotransformation and the interactions between redox conditions and microbial biotransformation activities, contributing to the better elucidation of PFAS environmental fate and impact.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonates , Biotransformation , Chromatography, Liquid , Fluorocarbons/analysis , Nitrates/analysis , Sulfides , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
17.
Environ Sci Technol ; 56(15): 10785-10797, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35852516

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS), butyl carbitol, and corrosion inhibitors are components of aqueous film-forming foams (AFFFs). Volatile (neutral) fluorotelomerization (FT)- and electrochemical fluorination (ECF)-based PFAS, butyl carbitol, and organic corrosion inhibitors were quantified in 39 military specification (MilSpec), non-MilSpec, and alcohol resistant-AFFF concentrates (undiluted) from 1974 to 2010. Fluorotelomer alcohols were found only in FT-based AFFFs and N-methyl- and N-ethyl-perfluoroalkyl sulfonamides, and sulfonamido ethanols were found only in ECF-based AFFFs. Neutral PFAS and benzotriazole, 4-methylbenzotriazole, and 5-methybenzotriazole occurred at mg/L levels in the AFFFs, while butyl carbitol occurred at g/L levels. Neutral PFAS concentrations in indoor air due to vapor intrusion of a nearby undiluted AFFF release are estimated to be anywhere from 2 to >10 orders of magnitude higher than documented background indoor air concentrations. Estimated butyl carbitol and organic corrosion inhibitor concentrations were lower than and comparable to indoor concentrations recently measured, respectively. The wide range of neutral PFAS concentrations and Henry's law constants indicate that field, soil-gas measurements are needed to validate the estimations. Co-discharged butyl carbitol likely contributes to oxygen depletion in AFFF-impacted aquifers and may hinder the natural PFAS aerobic biotransformation. Organic corrosion inhibitors in AFFFs indicate that these are another source of corrosion inhibitors in the environment.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Aerosols , Corrosion , Ethylene Glycols , Fluorocarbons/analysis , Gases , Water , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 842: 156831, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35750184

ABSTRACT

Current attention is focused on determining the potential for per- and polyfluoroalkyl substances (PFAS) to adversely impact human health. Zebrafish are a popular biological model because they share early development pathways with humans. A dietary exposure paradigm is growing in popularity in the zebrafish model because the outcomes often translate to humans. To create a diet of known composition, it is crucial to understand background PFAS levels present in zebrafish diet. Background PFAS, if present, potentially confounds interpretation of toxicological data. To date, no studies document the PFAS background levels in laboratory fish diet and there is only limited information on some pet foods. The objective of this study was to develop and validate an analytical method for up to 50 target PFAS in high lipid and protein content laboratory fish diets and pet foods. Long-chain perfluoroalkyl carboxylic acids (C9-C13) and perfluorooctane sulfonate (PFOS) were quantified in 11 out of 16 laboratory fish diets and in three out of five pet fish foods. Foods for pet birds, lizards, and dogs were below the limit of detection for all PFAS. In two of the laboratory fish diets, PFOS concentrations were >1.3 ng/g and the total PFAS for the three laboratory fish diets exceeded 1.0 ng/g. Hundreds of biomedical laboratories across the world utilize these commercial laboratory fish diets, and these results indicate that numerous zebrafish colonies may be inadvertently receiving significant dietary PFAS exposures. In light of this new information, it is critical to design PFAS studies with appropriate controls with measured background PFAS concentrations in the diet and to urge caution when interpreting the results.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Zebrafish , Alkanesulfonic Acids/toxicity , Animals , Diet/veterinary , Dietary Exposure , Fluorocarbons/toxicity , Humans , Laboratories
19.
Environ Sci Technol Lett ; 9(6): 473-481, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35719859

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are important environmental contaminants, yet relatively few analytical reference standards exist for this class. Nontarget analyses performed by means of high-resolution mass spectrometry (HRMS) are increasingly common for the discovery and identification of PFASs in environmental and biological samples. The certainty of PFAS identifications made via HRMS must be communicated through a reliable and harmonized approach. Here, we present a confidence scale along with identification criteria specific to suspect or nontarget analysis of PFASs by means of nontarget HRMS. Confidence levels range from level 1a-"Confirmed by Reference Standard," and level 1b-"Indistinguishable from Reference Standard," to level 5-"Exact Masses of Interest," which are identified by suspect screening or data filtering, two common forms of feature prioritization. This confidence scale is consistent with general criteria for communicating confidence in the identification of small organic molecules by HRMS (e.g., through a match to analytical reference standards, library MS/MS, and/or retention times) but incorporates the specific conventions and tools used in PFAS classification and analysis (e.g., detection of homologous series and specific ranges of mass defects). Our scale clarifies the level of certainty in PFAS identification and, in doing so, facilitates more efficient identification.

20.
J Hazard Mater ; 431: 128615, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35263707

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of widely used chemicals with limited human health effects data relative to the diversity of structures manufactured. To help fill this data gap, an extensive in vivo developmental toxicity screen was performed on 139 PFAS provided by the US EPA. Dechorionated embryonic zebrafish were exposed to 10 nominal water concentrations of PFAS (0.015-100 µM) from 6 to 120 h post-fertilization (hpf). The embryos were assayed for embryonic photomotor response (EPR), larval photomotor response (LPR), and 13 morphological endpoints. A total of 49 PFAS (35%) were bioactive in one or more assays (11 altered EPR, 25 altered LPR, and 31 altered morphology). Perfluorooctanesulfonamide (FOSA) was the only structure that was bioactive in all 3 assays, while Perfluorodecanoic acid (PFDA) was the most potent teratogen. Low PFAS volatility was associated with developmental toxicity (p < 0.01), but no association was detected between bioactivity and five other physicochemical parameters. The bioactive PFAS were enriched for 6 supergroup chemotypes. The results illustrate the power of a multi-dimensional in vivo platform to assess the developmental (neuro)toxicity of diverse PFAS and in the acceleration of PFAS safety research.


Subject(s)
Fluorocarbons , Zebrafish , Animals , Fluorocarbons/analysis , Larva , Teratogens
SELECTION OF CITATIONS
SEARCH DETAIL
...